The classical theory of the electrical double layer (EDL) does not consider the effects of the electrode surface structure on the EDL properties. Moreover, the best agreement between the traditional EDL theory and experiments has been achieved so far only for a very limited number of ideal systems, such as liquid metal mercury electrodes, for which it is challenging to operate with specific surface structures. In the case of solid electrodes, the predictive power of classical theory is often not acceptable for electrochemical energy applications, e.
View Article and Find Full Text PDFIn this study, we perform a systematic search to find the possible lowest energy structure of silicon nanoclusters Si ( = 8-80) by means of an evolutionary algorithm. The fitness function for this search is the total energy of density functional tight binding (DFTB). To be on firm ground, we take several low energy structures of DFTB and perform further geometrical optimization by density functional theory (DFT).
View Article and Find Full Text PDF