Publications by authors named "Mohammad Reza Khodabakhshi"

This work presents a novel, strong and efficient adsorbent (CS@TDI@EDTA@γ-AlO(OH)) prepared through the green process using three components, chitosan, BNPs and EDTA using amide and ester bridges. An eco-friendly and easy approach was used for the preparation of this novel adsorbent, the low cost, easy access to the used materials, and the simplicity of the preparation method are some of the interesting advantages of this work. Also, this prepared adsorbent was used as an adsorbent to remove diazinon organophosphate poison and tetracycline antibiotic from aqueous solutions.

View Article and Find Full Text PDF

Increasing population growth and rapid expansion of the industrialization of the world society have caused severe environmental pollution to the planet. This study was carried out in order to investigate the synthesis of biopolymeric texture nano adsorbent based on the Lentinan (LENT), Poly Vinyl Alcohol (PVA) and Iron Oxide nanoparticles for the removal of environmental pollutants. The spherical structural morphology of FeO@LENT/PVA nanocomposite has been determined by FE-SEM analyses.

View Article and Find Full Text PDF

In this study, a novel and efficient drug delivery system is proposed for the enhancement of antimicrobial properties of antibiotic medications such as vancomycin (VCM) and levofloxacin (OFX). The architecture of the designed drug carrier is based on halloysite nanotubes (HNTs) with a rolled-laminate shape, suitable for the encapsulation of drug and further release. In order to make them capable for magnetic direction to the target tissue, the exterior surface of the tubes is composed of iron oxide nanoparticles (FeO NPs), an process.

View Article and Find Full Text PDF

According to 4H-chromenes importance, we synthesized a novel magnetic UiO-66 functionalized with 4,4'-diamino-2,2'-stilbenedisulfonic as an efficient and reusable solid acid catalyst for synthesizing 4H-chromene skeletons via a one-pot three components reaction in a green solvent. The structure of the synthesized catalyst was confirmed by various techniques including FT-IR, XRD, BET, TGA, TEM, EDX, and SEM, and also the product yields were obtained in 83-96% of yields for all the reactions and under mild conditions. The reported procedure presents an environmentally friendly approach for synthesizing a significant number of 4H-chromene derivatives.

View Article and Find Full Text PDF