Publications by authors named "Mohammad Reza Karami Mollaei"

Predicting seizures before they happen can help prevent them through medication. In this research, first, a total of 22 features were extracted from 5-s segmented EEG signals. Second, tensors were developed as inputs for different deep transfer learning models to find the best model for predicting epileptic seizures.

View Article and Find Full Text PDF

Bivariate features, obtained from multichannel electroencephalogram recordings, quantify the relation between different brain regions. Studies based on bivariate features have shown optimistic results for tackling epileptic seizure prediction problem in patients suffering from refractory epilepsy. A new bivariate approach using univariate features is proposed here.

View Article and Find Full Text PDF

Combining multiple linear univariate features in one feature space and classifying the feature space using machine learning methods could predict epileptic seizures in patients suffering from refractory epilepsy. For each patient, a set of twenty-two linear univariate features were extracted from 6 electroencephalogram (EEG) signals to make a 132 dimensional feature space. Preprocessing and normalization methods of the features, which affect the output of the seizure prediction algorithm, were studied in terms of alarm sensitivity and false prediction rate (FPR).

View Article and Find Full Text PDF