Publications by authors named "Mohammad Reza Alivand"

Breast cancer (BC) is a global health concern with a growing prevalence. Since BC is a heterogeneous cancer, transcriptome analyzes were carried out on breast tumor tissues relative to their corresponding normal tissues in order to identify gene expression signatures and perform meta-analysis. Five expression profiling by array data sets from breast tumor tissues and non-tumor neighboring tissues were retrieved following a search in the GEO database (GSE70947, GSE70905, GSE10780, GSE29044, and GSE42568).

View Article and Find Full Text PDF

Objectives: Breast cancer (BC) is one of the most common cancers with a high mortality rate in women worldwide. The advantages of early cancer diagnosis are apparent, and it is a critical factor in increasing the patient's life and survival. According to mounting evidence, microRNAs (miRNAs) may be crucial regulators of critical biological processes.

View Article and Find Full Text PDF

Background: However, advanced technologies have been developed in the treatment of various cancers, but the mortality rate from cancer is still very high. Drug resistance is a major problem for patients with cancer, which causes the treatment process to fail. In addition to inhibiting drug resistance, targeted therapy is also very important in treatment.

View Article and Find Full Text PDF

MicroRNAs are non-coding ribonucleic acids that are evolutionarily protected. MiRNAs control the expression of genes after transcription by mRNA decomposition or the inhibition of their translation. These molecular structures control physiological and pathological processes; therefore, many of them can play vital roles as oncogenes or tumor inhibitors.

View Article and Find Full Text PDF

More effective prognostic and diagnostic tools are urgently required for early detecting and treating triple-negative breast cancer, which is the most acute type of breast cancer because of its lower survival rate, aggressiveness, and non-response to various common treatments. So, it remains the most harmful malignancy for women worldwide. Recently, circular RNAs, as a group of non-coding RNAs, with covalently closed loop and high stability have been discovered, which can modulate gene expression through competing with endogenous microRNA sponges.

View Article and Find Full Text PDF

Background: The role of glucocorticoids in implantation has been demonstrated.

Objective: This study aimed to evaluate the effect of dexamethasone on endometrial receptivity.

Materials And Methods: In this experimental study, 40 BALB/c female mice aged eight wk old weighing approximately 25.

View Article and Find Full Text PDF

Drug resistance is the drug-effectiveness reduction in treatment and is a serious problem in oncology and infections. In oncology, drug resistance is a complicated process resulting from enhancing the function of a pump that transports drugs out of tumor cells, or acquiring mutations in drug target. Surprisingly, most drugs are very effective in the early stages, but the response to the drug wears off over time and resistance eventually develops.

View Article and Find Full Text PDF

Background: Kawasaki disease (KD) is a pediatric inflammatory disorder causes coronary artery complications. The disease overlapping manifestations with a set of symptomatically like diseases such as bacterial and viral infections, juvenile idiopathic arthritis, Henoch-Schönlein purpura, infection of unknown etiology, group-A streptococcal and adenoviral infections, and incomplete KD could lead to misdiagnosis of the disease.

Methods: In the present study, we applied weighted gene co-expression network analysis (WGCNA) to identify network modules of co-expressed genes in GSE73464 and also, limma package was used to identify the differentially expressed genes (DEGs) in KD expression arrays composed of GSE73464, GSE18606, GSE109351, and GSE68004.

View Article and Find Full Text PDF

DNA methylation is a reversible biochemical process determinant of gene expression that is frequently observed in acute lymphoblastic leukemia (ALL). This is believed to arise from aberrant DNA methyltransferase activity establishing abnormal levels of DNA methylation in tumor cells. DNA methyltransferase inhibitor, 5-azacytidine (5-AZA), is a clinically used epigenetic drug which induces promoter demethylation and gene re-expression in human cancers.

View Article and Find Full Text PDF

Accumulating evidence indicates that specific strains of mucosa-associated () can influence the development of colorectal carcinoma. This study aimed to investigate the prevalence and characterization of mucosa-associated obtained from the colorectal cancer (CRC) patients and control group. At two referral university-affiliated hospitals in northwest Iran, 100 patients, 50 with CRC and 50 without, were studied over the course of a year.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common, most invasive, and malignant type of primary brain tumor with poor prognosis and poor survival rate. Using GSE22891 the expression and methylation status of same GBM patients was evaluated to identify key epigenetic genes in GBM. Using |log2FC| > 1 and FDR 〈 0.

View Article and Find Full Text PDF

Epigenetics refers to nucleotide sequence-independent events, and heritable changes, including DNA methylation and histone modification (as the two main processes), contributing to the phenotypic features of the cell. Both genetics and epigenetics contribute to determining the outcome of regulatory gene expression systems. Indeed, the flexibility of epigenetic effects and stability of genetic coding lead to gene regulation complexity in response signals.

View Article and Find Full Text PDF

More powerful prognostic and diagnostic tools are urgently needed for identifying and treating ovarian cancer (OC), which is the most fatal malignancy in women in developed countries. Circular RNAs (circRNAs) are conservative and stable looped molecules that can regulate gene expression by competing with other endogenous microRNA sponges. This discovery provided new insight into novel methods for regulating genes that are involved in many disorders and cancers.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways.

View Article and Find Full Text PDF

Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity.

View Article and Find Full Text PDF

Background: Leukemic cells facilitate the creation of the tumor-favorable microenvironment in the bone marrow niche using their secreted factors. There are not comprehensive details about immunosuppressive properties of chronic myelogenous leukemia-derived exosomes in the bone marrow stromal and immune compartment. We explained here that K562-derived exosomes could affect the gene expression, cytokine secretion, nitric oxide (NO) production, and redox potential of human primary cord blood-derived T cells (CB T cells).

View Article and Find Full Text PDF

Background: Breast cancer (BC) is the most invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered critical nutrition that many cancer cells, particularly BC cells, are dependent on it for growth and proliferation. Therefore, targeting glutamine metabolism, especially enzymes that are related to this pathway, can be beneficial to design anti-cancer agents.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the effect of mimic hypoxia on proliferation, the expression of significant miRNAs, and genes involved in drug resistance in MOLT-4 and KG1 cell lines.

Materials And Methods: The KG1 and MOLT-4 cell lines were cultured in RPMI 1640 medium supplemented with 20% FBS and 10% FBS respectively. The MTT test was used for determining  the optimum dose of CoCl2 for KG1 and MOLT-4 cell lines.

View Article and Find Full Text PDF

Objective: Breast cancer (BC) is the most significant and lethal type of cancer in women. Although there are many newly develop chemotherapy drugs for patients with BC treating at various stages, drug resistance is the most important obstacle in their effectiveness for BC treatment. On the other hand, microRNAs are considered key regulators of genes involved in carcinogenesis and chemoresistance in cancers.

View Article and Find Full Text PDF

Breast cancer (BC) is a heterogeneous cancer with multiple subtypes affecting women worldwide. Triple-negative breast cancer (TNBC) is a prominent subtype of BC with poor prognosis and an aggressive phenotype. Recent understanding of metabolic reprogramming supports its role in the growth of cancer cells and their adaptation to their microenvironment.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), a novelty-defined class of regulatory genes, have revolutionized principles of classical bimolecular. These RNAs regulate the expression of a gene through inhibition of translational initiation or targeting mRNAs for degradation. MiRNAs act in several biological operations, including proliferation, differentiation, and cell death, and their expression is often abnormal in human diseases such as cancer.

View Article and Find Full Text PDF

MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features.

View Article and Find Full Text PDF

Background: Breast Cancer (BC) is the most common malignancy among women with a high mortality rate. The blockade of asparagine-related pathways may be an effective measure to control the progression and reduction of BC metastasis potential. Recently, it has been shown that various miRNAs, as part of small non-coding RNAs, have a great role in cancer development, especially asparagine-related pathways, to modulate the invasiveness.

View Article and Find Full Text PDF

Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells.

View Article and Find Full Text PDF