Introduction: The positive effects of exercise on spatial memory and learning have been demonstrated in research. The olfactory sensory neurons (OSNs) respond to mechanical stimulation induced by nasal airflow which is associated with airflow intensity. Accordingly, nasal breathing can modulate brain oscillations in nonolfactory areas, and respiration-entrained oscillations aid the improvement of cognitive abilities.
View Article and Find Full Text PDFRespir Physiol Neurobiol
January 2025
Respiratory patterns were investigated in male Sprague-Dawley rats throughout their lifespan, from weanling (1 month) to old age (24 months), under natural conditions. Both inter-breath interval (IBI) and respiratory volume (RV) were examined. Sample entropy suggested increasing irregularity in IBI but decreasing irregularity in RV until 12 months.
View Article and Find Full Text PDFAnxiety is among the most fundamental mammalian behaviors. Despite the physiological and pathological importance, its underlying neural mechanisms remain poorly understood. Here, we recorded the activity of olfactory bulb (OB) and medial prefrontal cortex (mPFC) of rats, which are critical structures to brain's emotional processing network, while exploring different anxiogenic environments.
View Article and Find Full Text PDFWhile breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex.
View Article and Find Full Text PDFAims: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated.
Methods: Epilepsy was induced by pilocarpine in male Wistar rats.
Introduction: Stuttering is a speech disorder characterized by impaired connections between brain regions involved in speech production. This study aimed to investigate functional connectivity and frequency power during rest in adults who stutter (AWS) compared to fluent adults (AWNS) in the dorsolateral prefrontal cortex (DLPFC), dorsolateral frontal cortex (DLFC), supplementary motor area (SMA), motor speech, angular gyrus (AG), and inferior temporal gyrus (ITG).
Materials And Methods: Fifteen AWS (3 females, 12 males) and fifteen age- and sex-matched AWNS (3 females, 12 males) participated in this study.
Infertility is such an important issue in society today. In some cases of male infertility, the main cause is oxidative stress and the presence of reactive oxygen species in the environment or in sperm cells. All current techniques that measure oxidative stress, including the nitroblue tetrazolium Test, DNA Fragmentation Index, Malondialdehyde, and Endz Test are qualitative and semi-quantitative.
View Article and Find Full Text PDFSeveral vaccines have been developed against SARS-CoV-2 and subsequently approved by national/international regulators. Detecting specific antibodies after vaccination enables us to evaluate the vaccine's effectiveness. We conducted a prospective longitudinal study among members of Tarbiat Modares University of Tehran, Iran, from 4 September 2021 until 29 December 2021.
View Article and Find Full Text PDFBrain Res Bull
October 2023
Psychiatric disorders are common in patients with allergic asthma, and they can have a significant impact on their quality of life and disease control. Recent studies have suggested that there may be potential immune-brain communication mechanisms in asthma, which can activate inflammatory responses in different brain areas, leading to structural and functional alterations and behavioral changes. However, the precise mechanisms underlying these alterations remain unclear.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2023
Brain functional deficits have been reported in asthma patients which can result in behavioral disorders like depression and anxiety. These deficits may be associated with factors like resistance to treatment, incorrect self-evaluation, and inadequate self-control. However, changes in the brain volume in allergic asthma and the effects of inhaled corticosteroids, the most common anti-inflammatory agents for asthma treatment, on these alterations remain largely unclear.
View Article and Find Full Text PDFAllergic asthma is a common chronic inflammatory condition associated with psychiatric comorbidities. Notably depression, correlated with adverse outcomes in asthmatic patients. Peripheral inflammation's role in depression has been shown previously.
View Article and Find Full Text PDFAsthma is a heterogeneous disease in which the complexity of the breathing pattern reduces as the severity of the disease increases. Since the pathophysiological basis of reduced breathing pattern complexity in asthma is unclear, in this study, we investigated the effect of reducing inflammation using an inhaled corticosteroid (fluticasone propionate) on the breathing pattern of a rat model of asthma. Detrended fluctuation analysis, sample entropy, and cross-sample entropy analysis of both inter-breath interval and respiratory volume time series showed that early treatment with inhaled corticosteroids not only diminishes lung inflammation and airway hyper-responsiveness, but also has a protective effect against the reduction of breathing pattern complexity due to asthma.
View Article and Find Full Text PDFPharmacoresistant temporal lobe epilepsy affects millions of people around the world with uncontrolled seizures and comorbidities, like anxiety, being the most problematic aspects calling for novel therapies. The intrahippocampal kainic acid model of temporal lobe epilepsy is an appropriate rodent model to evaluate the effects of novel interventions, including glycolysis inhibition, on epilepsy-induced alterations. Here, we investigated kainic acid-induced changes in the dorsal hippocampus (dHPC) and basolateral amygdala (BLA) circuit and the efficiency of a glycolysis inhibitor, 2-deoxy D-glucose (2-DG), in resetting such alterations using simultaneous local field potentials (LFP) recording and elevated zero-maze test.
View Article and Find Full Text PDFMechanical ventilation (MV), as a life-saving procedure in critical patients, is a risk factor to develop of neurocognitive dysfunction and triggers of inflammation and apoptosis in the brain. Since diversion of breathing route to the tracheal tube diminishes brain activity entrained by physiological nasal breathing, we hypothesized that simulating nasal breathing using rhythmic air-puff (AP) into the nasal cavity of mechanically ventilated rats can reduce hippocampal inflammation and apoptosis in association with restoring respiration-coupled oscillations. We found that stimulating olfactory epithelium through applying rhythmic nasal AP, in association with reviving respiration-coupled brain rhythm, mitigates MV-induced hippocampal apoptosis and inflammation involving microglia and astrocytes.
View Article and Find Full Text PDFAims: Allergic asthma is associated with anxiety-related behaviors, leading to poor quality of life. Previous studies mainly described the neuropathophysiology of asthma-induced anxiety. However, the effects of corticosteroids, the most common anti-inflammatory agents for asthma treatment, on the neurophysiological foundations of allergic asthma-induced anxiety are unexplored.
View Article and Find Full Text PDFDopamine may be involved in the anticonvulsant action of deep brain stimulation (DBS). Therefore, ventral tegmental area (VTA), as a brain dopaminergic nucleus, may be a suitable target for DBS anticonvulsant action. This study investigated the effect of tonic and phasic stimulations of the VTA on seizure parameters.
View Article and Find Full Text PDFLow frequency deep brain electrical stimulation (LFS) is a potential therapeutic strategy to control seizures in epilepsy patients. Given the functional connection of the olfactory bulb with the hippocampal formation, in this study the effect of applying LFS in the olfactory bulb on seizure severity, and learning and memory was investigated in hippocampal kindling. In male Wistar rats (250-300 g), a tripolar electrode was inserted in the CA1 region of the right hippocampus to apply kindling stimulations and record the afterdischarges (ADs).
View Article and Find Full Text PDFWe recruited 38 participants, equally distributed into healthy and asthma groups. Behavioral, neurophysiological, and lung function assessment tools were used in this study. Our behavioral data show that allergic asthma induces attention impairment.
View Article and Find Full Text PDFBackground And Objectives: Default mode network (DMN) is a principal network that is more active at the baseline functional state of consciousness and spontaneous brain activity. Nasal breathing beyond the oxygen supply, entrained brain oscillations in widespread brain regions. Consistent with the important role of nasal breathing on neural oscillation for brain function, here we aimed to evaluate respiration entrained DMN rhythms.
View Article and Find Full Text PDFTemporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain's functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales.
View Article and Find Full Text PDFNeural oscillations synchronize the activity of brain regions during cognitive functions, such as spatial working memory. Olfactory bulb (OB) oscillations are ubiquitous rhythms that can modulate neocortical and limbic regions. However, the functional connectivity between the OB and areas contributing to spatial working memory, such as the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), is less understood.
View Article and Find Full Text PDF