Purpose: This study aimed to evaluate the impact of a metal artifact reduction (MAR) algorithm on cone-beam computed tomography (CBCT) scans of titanium and zirconia implants, both within and outside the field of view (FOV).
Materials And Methods: In this study, a dry human mandible was positioned in a CBCT scanner with only its left quadrant included in the FOV. Each type of implant (titanium and zirconia) was placed once in the right second premolar extraction socket and once in the left second premolar extraction socket of the mandible.
The aim of this study is to investigate the effects of grain orientation in polycrystalline materials on cell-substrate interactions. Samples are prepared from rods and sheets of Ti-6Al-4V substrates with predominately two distinct crystallographic orientations. X-ray diffraction analysis indicates that 36% of the surfaces of rod samples consist of (1010) plane, while the predominant orientation in the surface of the sheet samples is (1120) plane (29%).
View Article and Find Full Text PDF