Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of 2D materials. The displacement cross sections of monolayer hexagonal boron nitride (hBN) are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions, where chemical etching appears to dominate.
View Article and Find Full Text PDFAlong with hydrogen, carbon, nitrogen and oxygen are the arguably most important elements for organic chemistry. Due to their rich variety of possible bonding configurations, they can form a staggering number of compounds. Here, we present a detailed analysis of nitrogen and oxygen bonding configurations in a defective carbon (graphene) lattice.
View Article and Find Full Text PDFTransparent and conductive films (TCFs) are of great technological importance. Their high transmittance, electrical conductivity, and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for the raw material for TCFs. Despite the ballistic transport in individual SWCNTs, electrical conductivity of SWCNT networks is limited by low efficiency of charge tunneling between the tube elements.
View Article and Find Full Text PDFMolecular self-assembly due to chemical interactions is the basis of bottom-up nanofabrication, whereas weaker intermolecular forces dominate on the scale of macromolecules. Recent advances in synthesis and characterization have brought increasing attention to two- and mixed-dimensional heterostructures, and it has been recognized that van der Waals (vdW) forces within the structure may have a significant impact on their morphology. Here, we suspend single-walled carbon nanotubes (SWCNTs) on graphene to create a model system for the study of a 1D-2D molecular interface through atomic-resolution scanning transmission electron microscopy observations.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have considerably expanded the field of materials science in the past decade. Even more recently, various 2D materials have been assembled into vertical van der Waals heterostacks, and it has been proposed to combine them with other low-dimensional structures to create new materials with hybridized properties. We demonstrate the first direct images of a suspended 0D/2D heterostructure that incorporates C molecules between two graphene layers in a buckyball sandwich structure.
View Article and Find Full Text PDF