Publications by authors named "Mohammad Pourhassan-Moghaddam"

Antibiotic resistance is one of the serious health-threatening issues globally, the control of which is indispensable for rapid diagnosis and treatment because of the high prevalence and risks of pathogenicity. Traditional and molecular techniques are relatively expensive, complex, and non-portable, requiring facilities, trained personnel, and high-tech laboratories. Widespread and timely-detection is vital to the better crisis management of rapidly spreading infective diseases, especially in low-tech regions and resource-limited settings.

View Article and Find Full Text PDF

Real-time connectivity and employment of sustainable materials empowers point-of-care diagnostics with the capability to send clinically relevant data to health care providers even in low-resource settings. In this study, we developed an advantageous kit for the on-site detection of carcinoembryonic antigen (CEA) in human serum. CEA sensing was performed using cellulose-based lateral flow strips, and colorimetric signals were read, processed, and measured using a smartphone-based system.

View Article and Find Full Text PDF

Background: Carbon dots (C-dots) are photoluminescent nanoparticles with less than 10 nm in size. Today, many studies are performed to exploit the photoluminescence (PL) property of carbon dots, and our focus in this study is to estimate the dipole moment of carbon dots. For reaching our aims, C-dots were synthesized and dissolved in the different solvents.

View Article and Find Full Text PDF

This study reports development of a novel point of care assay, namely an enhanced immuno-dot blot assay, for discrimination of anti-Toxoplasma IgG and anti-Toxoplasma IgM antibodies. This method has been designed based on formation of a sandwich complex between a gold nanoprobe (chitosan gold nanoparticle-anti-human IgG or anti-IgM) and anti- Toxoplasma lysate antigen (TLA) which holds anti-TLA antibodies, either IgG or IgM. Briefly, anti-human IgG or anti-IgM antibody was conjugated to chitosan gold nanoparticles via glutaraldehyde chemistry.

View Article and Find Full Text PDF

Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device.

View Article and Find Full Text PDF

Recently nanomaterials have attracted interest for increasing efficiency of polymerase chain reaction (PCR) systems. Here, the authors report on the usefulness of green graphene oxide/gold (GO/Au) nanocomposites for enhancement of PCR reactions. In this study, green GO/Au nanocomposite was prepared with Matricaria chamomilla extract as reducing/capping agent for site-directed nucleation of Au atoms on surface of GO sheets.

View Article and Find Full Text PDF

Quantum dots (QDs) with a nanoscale size range have attracted significant attention in various areas of nanotechnology due to their unique properties. Different strategies for the synthesis of QD nanoparticles are reported in which various factors, such as size, impurities, shape, and crystallinity, affect the QDs fundamental properties. Consequently, to obtain QDs with appropriate physical properties, it is required to select a synthesis method which allows enough control over the surface chemistry of QDs through fine-tuning of the synthesis parameters.

View Article and Find Full Text PDF

Surface plasmon enhanced light scattering (SP-LS) is a powerful new sensing SPR modality that yields excellent sensitivity in sandwich immunoassay using spherical gold nanoparticle (AuNP) tags. Towards further improving the performance of SP-LS, we systematically investigated the AuNP size effect. Simulation results indicated an AuNP size-dependent scattered power, and predicted the optimized AuNPs sizes (i.

View Article and Find Full Text PDF

Molecular imaging is one of the import methods for recognition of cancer at the early stage in order to enhance the capacity of remedy. This study was aimed to introduce a new contrast agent that was targeted with CD24 so as to improve the CT scan detection of cancer cells with higher CD24 expression. The surface modifications of gold nanoparticles (Au-NPs) were done with long PEG (HS-PEG-CH3O) and short PEG (HS-PEG-COOH) chains to enhance their stability and capacity for immobilization of different antibodies.

View Article and Find Full Text PDF

Herbs having various natural substances can be utilized for the biosynthesis of Silver nanoparticles (AgNPs) and act as a stable, reliable and biocompatible alternative instead of the current physical and chemical approaches. It has been reported that Matricaria chamomilla possesses unique properties, especially anti-cancerous effects. The objective of the current work was to assess the chemical characteristics and anticancer effects of biosynthesized AgNPs applying aqueous extracts of M.

View Article and Find Full Text PDF

To reach ideal therapeutic potential of stem cells for regenerative medicine purposes, it is essential to retain their self-renewal and differentiation capacities. Currently, biological factors are extensively used for stemness maintaining and differentiation induction of stem cells. However, low stability, high cost, complicated production process, and risks associated with viral/endotoxin infection hamper the widespread use of biological factors in the stem cell biology.

View Article and Find Full Text PDF

The development of simple yet ultrasensitive biosensing approaches for the detection of cancer prognostic microRNA is an important step toward their successful clinical implementation. We demonstrate the relevance for the detection of circulating miRNA of a novel signal amplification scheme based on surface plasmon resonance enhanced light scattering (SP-LS). In addition to experimental optimization carried out using gold nanoparticle (AuNP) tags conjugated with a monoclonal antibody with high affinity for RNA*DNA hybrid duplexes, simulation modeling was conducted to obtain insights about SP-LS biosensing.

View Article and Find Full Text PDF

The present study describes the effects of Watercress extract (WE) based electrospun nanofibrous mats on the regulation of adhesion, proliferation, cytoprotection and stemness preservation of adipose-derived stem cells (ADSCs). Watercress (Nasturtium officinale) is one of the most important medicinal plant with a board spectrum of biological functions. For this purpose, WE-loaded PCL-PEG nanofibers were fabricated by electrospinning and characterized using FE-SEM and FTIR.

View Article and Find Full Text PDF

Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide.

Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter.

View Article and Find Full Text PDF

Telomerase, which has been detected in almost all kinds of cancer tissues, is considered as an important tumor marker for early cancer diagnostics. In the present study, an electrochemical method based on liposomal signal amplification platform is proposed for simple, PCR-free, and highly sensitive detection of human telomerase activity, extracted from A549 cells. In this strategy, telomerase reaction products, which immobilized on streptavidin-coated microplate, hybridized with biotinylated capture probes.

View Article and Find Full Text PDF

Within an hour, as little as one disseminated tumor cell (DTC) per lymph node can be quantitatively detected using an intraoperative biosensing platform based on silicon nanowire field-effect transistors (SiNW FET). It is also demonstrated that the integrated biosensing platform is able to detect the presence of circulating tumor cells (CTCs) in the blood of colorectal cancer patients. The presence of DTCs in lymph nodes and CTCs in peripheral blood is highly significant as it is strongly associated with poor patient prognosis.

View Article and Find Full Text PDF

Purpose: Clofarabine, a purine nucleoside analogue and inhibitor of Ribonucleotide Reductase (RR), is used for treatment of leukemia. Clofarabine-induced defect in DNA replication, induces p53 and subsequently P53R2 genes as subunit of RR. clofarabine deregulated P53R2 gene expression leading to the elevated levels of P53R2 which impose resistance to DNA damaging drugs.

View Article and Find Full Text PDF

An integrated translational biosensing technology based on arrays of silicon nanowire field-effect transistors (SiNW FETs) is described and has been preclinically validated for the ultrasensitive detection of the cancer biomarker ALCAM in serum. High-quality SiNW arrays have been rationally designed toward their implementation as molecular biosensors. The FET sensing platform has been fabricated using a complementary metal oxide semiconductor (CMOS)-compatible process.

View Article and Find Full Text PDF

Human Telomerase Reverse Transcriptase (hTERT) gene is expressed in all types of cancers, and it is considered as unique biomarker for early detection, monitoring and prognosis of different cancers. Routinely, the main techniques for detection of hTERT gene expression are based on enzymatic amplifications which need specified equipments, expert personnel and high cost and time. With regarding to the clinical importance of analysis of hTERT gene expression, we have developed a rapid, simple and low cost method which detects hTERT RNA target in 5 μl reaction scale using gold nanoprobes.

View Article and Find Full Text PDF

Background: Recent studies suggested that leptin as a mitogenic factor might play an important role in the process of initiation and progression of human cancer. Therefore, it could be considered as a target for breast cancer therapy. A previous study has showed that expression of leptin gene could be modulated by activation of estrogen receptors.

View Article and Find Full Text PDF

Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins.

View Article and Find Full Text PDF

Background: Telomerase has been considered as an attractive molecular target for breast cancer therapy. The main objective of this work is to assess the inhibitory effects of silibinin and curcumin, two herbal substances, on telomerase gene expression in breast cancer cells.

Materials And Methods: For determination of cell viability tetrazolium-based assays were conducted after 24, 48, and 72 h exposure times and expression of human telomerase reverse transcriptase gene was measured with real-time PCR.

View Article and Find Full Text PDF

Leptin plays the role of mitogenic factor in the breast carcinogenesis. Therefore, it could be considered as a target for breast cancer therapy. Leptin gene expression could be modulated by activation of estrogen receptors.

View Article and Find Full Text PDF

Introduction: Production of complex human recombinant proteins is an important issue in medical biotechnology. These proteins are mostly expressed in non-human mammalian host cells. This has some problems including non-human post-translational modifications, application of high-cost agents for inducing protein expression and low yields.

View Article and Find Full Text PDF