Objective: Injectable biomaterials that can completely fill the root canals and provide an appropriate environment will have potential application for pulp regeneration in endodontics. This study aimed to fabricate and characterize a novel injectable human amniotic membrane (HAM) hydrogel scaffold crosslinked with genipin, enabling the proliferation of Dental Pulp Stem Cells (DPSCs) and optimizing pulp regeneration.
Methods: HAM extracellular matrix (ECM) hydrogels (15, 22.
Introduction: This study aimed to characterize the decellularization effects of different treatment protocols on the bovine dental pulp extracellular matrix (ECM) for tissue regeneration.
Methods: Seven different decellularization protocols consisting of trypsin/EDTA (for 1 hour, 24 hours, or 48 hours), sodium dodecyl sulfate (SDS, for 24 hours or 48 hours), Triton X-100 (for 1 hour), and deoxyribonuclease treatments were tested on bovine dental pulp tissue. The posttreatment samples were evaluated for remaining DNA and cellular contents, structural durability, immunofluorescence analysis, and in vivo immune responses.
Introduction: This study aims to develop and characterize the regenerative potential of an atelopeptidized treated dentin matrix xenograft using in vitro and in vivo models.
Methods: Freshly extracted bovine dentin was pulverized into 250- to 500-μm particles and demineralized with 17% EDTA for 1, 7, and 13 days. The samples were atelopeptidized with pepsin.
Objective: Recent studies suggest xenogeneic extracellular matrices as potential regenerative tools in dental pulp regeneration. This study aimed to fabricate and characterize a novel three-dimensional macroporous pulp-derived scaffold that enables the attachment, penetration, proliferation and differentiation of mesenchymal stem cells.
Method: Bovine pulp was decellularized and characterized with histological and DNA content methods.
Mass fabrication of sodium alginate nanofibers using single-nuzzle electrospinning process is an open challenge mainly due to its inter- and intramolecular hydrogen bonding, rigid chain conformation and low solubility. In this regards, we synthesized sodium sulfated alginate (SSA) through sulfation of hydroxyl functional groups of alginate. Not only decreases the hydrogen bonding density through the sulfation reaction, but the sulfated alginate also demonstrates more solubility in aqueous media compared to the pristine alginate.
View Article and Find Full Text PDF