The structural components in the aeronautical industry require CFRP/Ti6Al4V stacks to be processed together, which results in poor hole integrity due to the thermal properties of the materials and challenges related to processability. These challenges include quality variation of the machined holes because of the limitations in process properties. Therefore, a novel solution through helical milling is investigated in the study using nano fluid based minimum quantity lubrication (NF-MQL).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2021
Biomedical implant rejection due to micromotion and inflammation around an implant leads to osteolysis and eventually has an implant failure because of poor osseointegration. To enhance osseointegration, the implant surface modification both at the nano and micro-scale levels is preferred to result in an enhanced interface between the body tissue and implant. The present study focuses on the modification of the surface of Titanium (α+β) ELI medical grade alloy using powder-mixed electric discharge machining (PMEDM).
View Article and Find Full Text PDFSurface modification is given vital importance in the biomedical industry to cope with surface tissue growth problems. Conventionally, basic surface treatment methods are used which include physical and chemical deposition. The major drawbacks associated with these methods are excessive cost and poor adhesion of coating with implant material.
View Article and Find Full Text PDFTo get the maximum heat transfer in real applications, the surface area of the micro-features (micro-channels) needs to be large as possible. It can be achieved by producing a maximum number of micro-channels per unit area. Since each successive pair of the micro-channels contain an inter-channels fin, therefore the inter-channels fin thickness (IFT) plays a pivotal role in determining the number of micro-channels to be produced in the given area.
View Article and Find Full Text PDF