Line waves (LWs) refer to confined edge modes that propagate along the interface of dual electromagnetic metasurfaces while maintaining mirror reflection symmetries. Previous research has both theoretically and experimentally investigated these waves, revealing their presence in the microwave and terahertz frequency ranges. In addition, a comprehensive exploration has been conducted on the implementation of non-Hermitian LWs by establishing the parity-time symmetry.
View Article and Find Full Text PDFConsidering the widespread applications of resonant phenomena in metasurfaces to bend, slow, concentrate, guide and manipulate lights, it is important to gain deep analytical insight into different types of resonances. Fano resonance and its special case electromagnetically induced transparency (EIT) which are realized in coupled resonators, have been the subject of many studies due to their high-quality factor and strong field confinement. In this paper, an efficient approach based on Floquet modal expansion is presented to accurately predict the electromagnetic response of two-dimensional/one-dimensional Fano resonant plasmonic metasurfaces.
View Article and Find Full Text PDFDue to the wide range of applications of metal/graphene-based plasmonic metasurfaces (sensors, absorbers, polarizers), it has become essential to provide an analytical method for modeling these structures. An analytical solution simplified into a circuit model, in addition to greatly reducing the simulation time, can become an essential tool for designing and predicting the behaviors of these structures. This paper presents a high-precision equivalent circuit model to study these structures in one-dimensional and two-dimensional periodic arrays.
View Article and Find Full Text PDF