Publications by authors named "Mohammad Naderi"

Background: Simulated Physiological Oocyte Maturation (SPOM) mimics the physiological events of oocyte maturation in the presence of cAMP modulators. These modulators increase the intracellular concentrations of cAMP, which inhibits the immediate resumption of meiosis and gives the oocyte more time to gain optimal developmental competence. In addition, L-carnitine helps to increase the energy supply of cells through the β-oxidation of fatty acids.

View Article and Find Full Text PDF

During postnatal brain development, maintaining a delicate balance between excitation and inhibition (E/I) is essential for the precise formation of neuronal circuits. The K+/cl- cotransporter 2 (KCC2) is instrumental in this process, and its dysregulation is implicated in various neurological disorders. This study utilized zebrafish () to investigate the socio-cognitive consequences of KCC2 disruption.

View Article and Find Full Text PDF

There is little data, to our knowledge, on the biochemical properties of different sp. genotypes affected by plant growth regulators (PGR) under temperature stress. A split plot research on the basis of a complete randomized block design with three replicates examining temperature stress (planting dates, 8th of April, May and June) (main factor), and the factorial combination of plant growth regulators (PGR, control (CO), gibberellic acid (GA), fertilization (MI), and amino acid (A)), and genotypes (Khuzestani, Mutika, and Bakhtiari) on plant biochemical properties, was conducted.

View Article and Find Full Text PDF

There is little data regarding the impact of renin-angiotensin system (RAS) gene polymorphisms on tuberculosis. The current study designed to survey the possible association between RAS polymorphisms and the risk of pulmonary tuberculosis (PTB) in a sample of the southeast Iranian population. This case-control study was done on 170 PTB patients and 170 healthy subjects.

View Article and Find Full Text PDF

Coastal areas are of paramount importance due to their pivotal role in facilitating a wide range of socio-economic activities and providing vital environmental services. These areas, as the meeting points of land and sea, face significant risks of flooding due to the ongoing rise in sea levels caused by climate change. Additionally, they are susceptible to extreme events like king tides and large waves in the future.

View Article and Find Full Text PDF

Objectives: Exhausted CD8+ T-cells over-express immune checkpoint receptors (ICRs), which interact with their ligands on malignant cells. However, some ICRs have been reported to be expressed on both T-cells and tumor cells, including V-domain immunoglobulin suppressor of T cell activation (VISTA), Galectin-9, and T-cell immunoglobulin mucin-3 (TIM-3). We aimed to evaluate the mRNA expression of VISTA, Galectin-9, and TIM-3 on CD8+ T-cells and leukemic cells in B-cell acute lymphoblastic leukemia (B-ALL).

View Article and Find Full Text PDF

Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio.

View Article and Find Full Text PDF

Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime.

View Article and Find Full Text PDF

Backgrounds: The aim of this study was to determine whether the addition of bioactive materials derived from Menstrual Blood Stem Cells (MenSCs) to the oocyte maturation medium may improve the quality of bovine embryos .

Methods: MenSCs were collected from 6 healthy women (between 26 and 36 years old) and after 3 days of culture, their bioactive materials were frozen. The bovine Cumulus-Oocyte-Complexes (COCs) were aspirated from ovarian slaughterhouse and the oocytes with more than three layers of cumulus cells were cultured in media supplemented with (treatment) and without (control) 10% MenSCs' bioactive materials.

View Article and Find Full Text PDF

Background: Estimating skeletal maturation and growth potential is essential for developing adolescents' best orthodontic treatment plan. The purpose of this study was to compare the duration of adolescent growth peak in subjects of skeletal classes I and III using the cervical vertebral maturation (CVM) method.

Methods: This retrospective cross-sectional study included 116 Iranian subjects (skeletal class I = 68, skeletal class III = 48) aged 8-16 years old and without previous orthodontic treatments.

View Article and Find Full Text PDF

The present research investigated the effects of exposure to sublethal concentrations of cadmium selenide/zinc sulfide (CdSe/ZnS)-containing quantum dots (QDs; 0 - 100 µg/L QDs) on the neurophysiological performance of developing zebrafish (Danio rerio). The results suggested that exposure to CdSe QDs for 5 days increased the whole-body content of Cd without affecting the general physiological conditions of larvae. Interestingly, CdSe QD exposure reduced swimming distance but increased swimming velocity of larvae, suggesting that the exposure may lead to burst/episodic swimming.

View Article and Find Full Text PDF

Dysregulation of the oxytocinergic system and excitation/inhibition (E/I) balance in synaptic transmission and neural circuits are common hallmarks of various neurodevelopmental disorders. Several experimental and epidemiological studies have shown that perinatal exposure to endocrine-disrupting chemicals bisphenol A (BPA) and bisphenol S (BPS) may contribute to a range of childhood neurodevelopmental disorders. However, the effects of BPA and BPS on social-cognitive development and the associated mechanisms remain largely unknown.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic remains an emerging public health crisis with serious adverse effects. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV--2) infection, targeting angiotensin-converting enzyme-2 (ACE2) receptor for cell entry. However, changes in the renin-angiotensin system (RAS) balance alter an individual's susceptibility to COVID-19 infection.

View Article and Find Full Text PDF

Algal blooms bring massive amounts of algal organic matter (AOM) into eutrophic lakes, which influences microbial methylmercury (MeHg) production. However, because of the complexity of AOM and its dynamic changes during algal decomposition, the relationship between AOM and microbial Hg methylators remains poorly understood, which hinders predicting MeHg production and its bioaccumulation in eutrophic shallow lakes. To address that, we explored the impacts of AOM on microbial Hg methylators and MeHg production by characterizing dissolved organic matter with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and quantifying the microbial Hg methylation gene .

View Article and Find Full Text PDF

The present research used zebrafish (5-28 days post-fertilization; dpf) as a model organism to investigate the effects of chronic exposure to environmentally relevant sub-lethal concentrations of waterborne (261 μg/L) and dietary zinc (Zn) (1500 mg Zn/kg dw), either independently or simultaneously, during development. The results showed that whole body contents of Zn were increased in all Zn treatment groups, with the highest accumulation of Zn observed in larvae simultaneously exposed to elevated waterborne and dietary Zn. In addition, exposure to elevated levels of Zn, either through the water or the diet, led to a decrease in whole body calcium (Ca) contents at 28 dpf.

View Article and Find Full Text PDF

Pain is the most frequently reported symptom involving in endometriosis. The alterations of neurotrophic factors and certain neuropeptides in the dorsal root ganglion (DRG), as well as serum and peritoneal fluid (PF), were evaluated in rat models of endometriosis. Twenty-four Sprague Dawley female rats were selected and maintained in a standard condition with 12 hours' dark-light cycles.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metals bioremediation using Matricaria chamomilla was explored by studying its ability to absorb cadmium (Cd) and lead (Pb) from contaminated soil under various conditions.
  • The study examined the effects of different concentrations of Cd and Pb on the biochemical properties of the plants, including pigment levels and stress markers like proline (Pro) and superoxide dismutase (SOD).
  • Results indicated that while heavy metal stress reduced pigment content, it increased Pro and SOD levels, and M. chamomilla showed potential as an effective plant for bioremediating Cd- and Pb-polluted soils.
View Article and Find Full Text PDF

Elevated levels of contaminants from human activities have become a major threat to animals, particularly within aquatic ecosystems. Selenium (Se) is a naturally occurring element with a narrow range of safe intake, but excessive Se has toxicological effects, as it can bioaccumulate and cause cognitive and behavioural impairments. In this study, we investigated whether exposure to Se would also have transgenerational effects, causing changes in the descendants of exposed individuals.

View Article and Find Full Text PDF

As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions.

View Article and Find Full Text PDF

Understanding the complexity and feedbacks among food, energy, and water (FEW) systems is key to making informed decisions about sustainable development. This paper presents qualitative representation and quantitative system dynamics simulation of the water resources system in the Qazvin Plain, Iran, taking into account the energy intensity of water supply and interconnected water use sectors (e.g.

View Article and Find Full Text PDF

Mannose-binding lectin (MBL) is an acute phase protein which recognizes the pathogens through its carbohydrate recognition domain. It is an important part of human innate immunity. The aim of the current study was to evaluate the impact of MBL2 polymorphism on pulmonary tuberculosis in a number of patients from the southeast of Iran.

View Article and Find Full Text PDF

The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health.

View Article and Find Full Text PDF

Bisphenol S (BPS) is increasingly used in a wide range of industrial and consumer products, resulting in its ubiquitous distribution across the environment, including aquatic ecosystems. Although it is commonly known as a weak/moderate estrogenic compound, there has been a growing acknowledgment of the potential of BPS to cause toxicity by inducing oxidative stress. Oxidative stress is a major participant in the development of anxiety-like behaviors in humans and animals.

View Article and Find Full Text PDF

Bisphenol S (BPS), considered to be a safe alternative to Bisphenol A, is increasingly used in a wide variety of consumer and industrial products. However, mounting evidence suggests that BPS can act as a xenoestrogen targeting a wide range of neuro-endocrine functions in animals. At present, very little is known about the impacts of BPS on social behaviors and/or the potential underlying mechanisms.

View Article and Find Full Text PDF

Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain.

View Article and Find Full Text PDF