Temporal transcriptional modulation of immune-related genes offers powerful therapeutic potential for treating inflammatory diseases. Here, we introduce an enhanced zinc finger (ZF)-based transcriptional repressor delivered via lipid nanoparticles for controlling immune signaling pathways . By targeting Myd88, an essential adaptor molecule involved in immunity, our system demonstrates therapeutic efficacy against septicemia in C57BL/6J mice and improves repeated AAV administration by reducing antibody responses.
View Article and Find Full Text PDFImplantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage.
View Article and Find Full Text PDFImplantation of the human embryo commences a critical developmental stage that comprises profound morphogenetic alteration of embryonic and extra-embryonic tissues, axis formation, and gastrulation events. Our mechanistic knowledge of this window of human life remains limited due to restricted access to samples for both technical and ethical reasons. Additionally, human stem cell models of early post-implantation development with both embryonic and extra-embryonic tissue morphogenesis are lacking.
View Article and Find Full Text PDFPlatelet factor 4 is a cytokine released into the bloodstream by activated platelets where it plays a pivotal role in etiology and diagnosis of heparin-induced thrombocytopenia. Therefore, a sustainable source of recombinant PF4 with structural and functional similarity to its native form is urgently needed to be used in diagnostic procedures. To this end, a three-in-one primary construct was designed from which three secondary constructs can be derived each capable of employing either type I, type II secretory or cytoplasmic pathways.
View Article and Find Full Text PDFObjectives: Human Wharton's Jelly mesenchymal stem cells (hWMSCs) are undifferentiated cells commonly used in regenerative medicine. The aim of this study was to develop a reliable tool for tracking hWMSCs when utilized as therapeutics in burnt disorders and also to optimize the cell-based treatment procedure.
Materials And Methods: The hWMSCs were first isolated from fresh umbilical cord Wharton's jelly and cultured.
Long non-coding RNAs (lncRNAs) comprise a vast repertoire of RNAs playing a wide variety of crucial roles in tissue physiology in a cell-specific manner. Despite being engaged in myriads of regulatory mechanisms, many lncRNAs have still remained to be assigned any functions. A constellation of experimental techniques including single-molecule RNA in situ hybridization (sm-RNA FISH), cross-linking and immunoprecipitation (CLIP), RNA interference (RNAi), Clustered regularly interspaced short palindromic repeats (CRISPR) and so forth has been employed to shed light on lncRNA cellular localization, structure, interaction networks and functions.
View Article and Find Full Text PDFStreptokinase is a valuable fibrinolytic agent used to cope with myocardial infarction and brain stroke. Despite its high efficiency in dissolving blood clots, streptokinase (SK) has no specificity in binding fibrin, causing some problems such as internal bleedings following its administration. To make streptokinase fibrin specific and limit the fibrinolytic process to the clot location, we engineered a chimeric streptokinase by fusing the fibrin binding Kringle 2 domain of tissue plasminogen activator (TPA) to the streptokinase N-terminal end.
View Article and Find Full Text PDF