The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range improves qubit connectivity in a neutral atom array.
View Article and Find Full Text PDFYang-Lee edge singularities (YLES) are the edges of the partition function zeros of an interacting spin model in the space of complex control parameters. They play an important role in understanding non-Hermitian phase transitions in many-body physics, as well as characterizing the corresponding nonunitary criticality. Even though such partition function zeroes have been measured in dynamical experiments where time acts as the imaginary control field, experimentally demonstrating such YLES criticality with a physical imaginary field has remained elusive due to the difficulty of physically realizing non-Hermitian many-body models.
View Article and Find Full Text PDF