Heterogeneous ice nucleation occurs vis-à-vis nucleating agents already present in solution yet can occur within a rather broad range of temperatures (0 to ca. -38 °C). Controlling this temperature and the subsequent growth of resulting ice crystals is crucial for the survival of biological organisms (certain insects, fish, and plants that endure subzero temperatures), as well as in the context of medical cryopreservation and food science.
View Article and Find Full Text PDFMany species living in colder regions of the world have adapted to the extreme climate by producing antifreeze (glycol) proteins (AF(G)P) which exhibit ice recrystallization inhibition (IRI), thermal hysteresis activity (THA), as well as other interactions with the freezing process of water. Although several synthetic approaches for the exploitation of these proteins have been investigated, challenges remain in the synthetic design of biomimetic polymers. Similar to biological antifreezes, poly(vinyl alcohol) (PVA) has potent IRI activity; however, by comparison, PVA has very little THA.
View Article and Find Full Text PDFLab-on-a-chip technology offers an ideal platform for low-cost, reliable, and easy-to-use diagnostics of key biomarkers needed for early screening of diseases and other health concerns. In this work, a graphene field-effect transistor (GFET) functionalized with target-binding aptamers is used as a biosensor for the detection of thrombin protein biomarker. Furthermore, this GFET is integrated with a microfluidic device for enhanced sensing performances in terms of detection limit, sensitivity, and continuous monitoring.
View Article and Find Full Text PDF