Publications by authors named "Mohammad Moghadamfalahi"

Error related potentials (ErrP), which are elicited in the EEG in response to a perceived error, have been used for error correction and adaption in the event related potential (ERP)-based brain computer interfaces designed for typing. In these typing interfaces, ERP evidence is collected in response to a sequence of stimuli presented usually in the visual form and the intended user stimulus is probabilistically inferred (stimulus with highest probability) and presented to the user as the decision. If the inferred stimulus is incorrect, ErrP is expected to be elicited in the EEG.

View Article and Find Full Text PDF

Augmentative and alternative communication (AAC) is typically used by people with severe speech and physical disabilities (SSPI) and is one of the main application areas for brain computer interface (BCI) technology. The target population includes people with cerebral palsy (CP), amyotrophic lateral sclerosis (ALS) and locked-in-syndrome (LIS). Word-based AAC systems are mainly faster than letter-based counterparts and are usually supplemented by icons to aid the users.

View Article and Find Full Text PDF

Noninvasive EEG (electroencephalography) based auditory attention detection could be useful for improved hearing aids in the future. This work is a novel attempt to investigate the feasibility of online modulation of sound sources by probabilistic detection of auditory attention, using a noninvasive EEG-based brain computer interface. Proposed online system modulates the upcoming sound sources through gain adaptation which employs probabilistic decisions (soft decisions) from a classifier trained on offline calibration data.

View Article and Find Full Text PDF

Noninvasive brain computer interfaces (BCI), and more specifically Electroencephalography (EEG) based systems for intent detection need to compensate for the low signal to noise ratio of EEG signals. In many applications, the temporal dependency information from consecutive decisions and contextual data can be used to provide a prior probability for the upcoming decision. In this study we proposed two probabilistic graphical models (PGMs), using context information and previously observed EEG evidences to estimate a probability distribution over the decision space in graph based decision-making mechanism.

View Article and Find Full Text PDF

Brain computer interfaces (BCIs) offer individuals suffering from major disabilities an alternative method to interact with their environment. Sensorimotor rhythm (SMRs) based BCIs can successfully perform control tasks; however, the traditional SMR paradigms intuitively disconnect the control and real task, making them non-ideal for complex control scenarios. In this study we design a new, intuitively connected motor imagery (MI) paradigm using hierarchical common spatial patterns (HCSP) and context information to effectively predict intended hand grasps from electroencephalogram (EEG) data.

View Article and Find Full Text PDF

A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters.

View Article and Find Full Text PDF

Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.

View Article and Find Full Text PDF

Brain-Computer Interfaces (BCIs) seek to infer some task symbol, a task relevant instruction, from brain symbols, classifiable physiological states. For example, in a motor imagery robot control task a user would indicate their choice from a dictionary of task symbols (rotate arm left, grasp, etc.) by selecting from a smaller dictionary of brain symbols (imagined left or right hand movements).

View Article and Find Full Text PDF

A simulation framework could decrease the burden of attending long and tiring experimental sessions on the potential users of brain computer interface (BCI) systems. Specifically during the initial design of a BCI, a simulation framework that could replicate the operational performance of the system would be a useful tool for designers to make design choices. In this manuscript, we develop a Monte Carlo based probabilistic simulation framework for electroencephalography (EEG) based BCI design.

View Article and Find Full Text PDF

Noninvasive electroencephalography (EEG)-based brain-computer interfaces (BCIs) popularly utilize event-related potential (ERP) for intent detection. Specifically, for EEG-based BCI typing systems, different symbol presentation paradigms have been utilized to induce ERPs. In this manuscript, through an experimental study, we assess the speed, recorded signal quality, and system accuracy of a language-model-assisted BCI typing system using three different presentation paradigms: a 4 × 7 matrix paradigm of a 28-character alphabet with row-column presentation (RCP) and single-character presentation (SCP), and rapid serial visual presentation (RSVP) of the same.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) promise to provide a novel access channel for assistive technologies, including augmentative and alternative communication (AAC) systems, to people with severe speech and physical impairments (SSPI). Research on the subject has been accelerating significantly in the last decade and the research community took great strides toward making BCI-AAC a practical reality to individuals with SSPI. Nevertheless, the end goal has still not been reached and there is much work to be done to produce real-world-worthy systems that can be comfortably, conveniently, and reliably used by individuals with SSPI with help from their families and care givers who will need to maintain, setup, and debug the systems at home.

View Article and Find Full Text PDF