Publications by authors named "Mohammad Mirzadeh"

The use of doxorubicin (Dox) in the treatment of breast cancer negatively affects the intestines and other tissues. Many studies have proven that probiotics and vitamin D3 have antitumor and intestinal tissue-protecting properties. To achieve effectiveness and minimize side effects, the current study aims to administer Dox together with probiotics (Lactobacillus acidophilus and Lactobacillus casei) and vitamin D3.

View Article and Find Full Text PDF

Freezing in charged porous media can induce significant pressure and cause damage to tissues and functional materials. We formulate a thermodynamically consistent theory to model freezing phenomena inside charged heterogeneous porous space. Two regimes are distinguished: free ions in open pore space lead to negligible effects of freezing point depression and pressure.

View Article and Find Full Text PDF

Background: Mercury (Hg) in dental amalgam is the world's hidden source of mercury contamination. The development of more eco-friendly and cost-effective adsorbents to reduce mercury pollutants in wastewater is highly desirable and is still a major challenge. In this study, a novel nanocomposite was synthesized and used as an efficient adsorbent for the removal of Hg(II) ions from aqueous solution.

View Article and Find Full Text PDF

Viscous fingering is a widely observed phenomenon, in which finger-like instabilities occur at the interface of two fluids, whenever a less viscous phase displaces a more viscous phase. This instability is notoriously difficult to control, especially for given viscosity ratio and geometry. Here we demonstrate experimentally the active control of viscous fingering of two given liquids, for given geometry and flow rate in a Hele-Shaw cell.

View Article and Find Full Text PDF

A numerical and theoretical framework to address the poromechanical effect of capillary stress in complex mesoporous materials is proposed and exemplified for water sorption in cement. We first predict the capillary condensation/evaporation isotherm using lattice-gas simulations in a realistic nanogranular cement model. A phase-field model to calculate moisture-induced capillary stress is then introduced and applied to cement at different water contents.

View Article and Find Full Text PDF

We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena.

View Article and Find Full Text PDF

We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant.

View Article and Find Full Text PDF

We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson's disease.

View Article and Find Full Text PDF