Publications by authors named "Mohammad Mehrian"

Stem cell expansion on 3D porous scaffolds cultured in bioreactor systems has been shown to be beneficial for maintenance of the original cell functionality in tissue engineering strategies (TE). However, the production of extracellular matrix (ECM) makes harvesting the progenitor cell population from 3D scaffolds a challenge. Medium composition plays a role in stimulating cell proliferation over extracellular matrix (ECM) production.

View Article and Find Full Text PDF

Tissue engineering is a fast progressing domain where solutions are provided for organ failure or tissue damage. In this domain, computer models can facilitate the design of optimal production process conditions leading to robust and economically viable products. In this study, we use a previously published computationally efficient model, describing the neotissue growth (cells + their extracellular matrix) inside 3D scaffolds in a perfusion bioreactor.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells (hMSCs) have become attractive candidates for advanced medical cell-based therapies. An in vitro expansion step is routinely used to reach the required clinical quantities. However, this is influenced by many variables including donor characteristics, such as age and gender, and culture conditions, such as cell seeding density and available culture surface area.

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine looks at improving or restoring biological tissue function in humans and animals. We consider optimising neotissue growth in a three-dimensional scaffold during dynamic perfusion bioreactor culture, in the context of bone tissue engineering. The goal is to choose design variables that optimise two conflicting objectives, first, maximising neotissue growth and, second, minimising operating cost.

View Article and Find Full Text PDF

In regenerative medicine, computer models describing bioreactor processes can assist in designing optimal process conditions leading to robust and economically viable products. In this study, we started from a (3D) mechanistic model describing the growth of neotissue, comprised of cells, and extracellular matrix, in a perfusion bioreactor set-up influenced by the scaffold geometry, flow-induced shear stress, and a number of metabolic factors. Subsequently, we applied model reduction by reformulating the problem from a set of partial differential equations into a set of ordinary differential equations.

View Article and Find Full Text PDF

Exposure-response modeling and simulation is especially useful in oncology as it permits to predict and design un-experimented clinical trials as well as dose selection. Dendritic cells (DC) are the most effective immune cells in the regulation of immune system. To activate immune system, DCs may be matured by many factors like bacterial CpG-DNA, Lipopolysaccharaide (LPS) and other microbial products.

View Article and Find Full Text PDF