Elderly and individuals with disabilities can greatly benefit from human activity recognition (HAR) systems, which have recently advanced significantly due to the integration of the Internet of Things (IoT) and artificial intelligence (AI). The blending of IoT and AI methodologies into HAR systems has the potential to enable these populations to lead more autonomous and comfortable lives. HAR systems are equipped with various sensors, including motion capture sensors, microcontrollers, and transceivers, which supply data to assorted AI and machine learning (ML) algorithms for subsequent analyses.
View Article and Find Full Text PDFThe alarming growth of misinformation on social media has become a global concern as it influences public opinions and compromises social, political, and public health development. The proliferation of deceptive information has resulted in widespread confusion, societal disturbances, and significant consequences for matters pertaining to health. Throughout the COVID-19 pandemic, there was a substantial surge in the dissemination of inaccurate or deceptive information via social media platforms, particularly X (formerly known as Twitter), resulting in the phenomenon commonly referred to as an "Infodemic".
View Article and Find Full Text PDFThis paper introduces a refined and broadened version of decision-theoretic rough sets (DTRSs) named Generalized Sequential Decision-Theoretic Rough Set (GSeq-DTRS), which integrates the three-way decision (3WD) methodology. Operating through multiple levels, this iterative approach aims to comprehensively explore the boundary region. It introduces the concept of generalized granulation, departing from conventional equivalence-relation-based structures to incorporate similarity/tolerance relations.
View Article and Find Full Text PDFThe rapid advancement of modern communication technologies necessitates the development of generalized multi-access frameworks and the continuous implementation of rate splitting, augmented with semantic awareness. This trend, coupled with the mounting pressure on wireless services, underscores the need for intelligent approaches to radio signal propagation. In response to these challenges, intelligent reflecting surfaces (IRS) have garnered significant attention for their ability to control data transmission systems in a goal-oriented and dynamic manner.
View Article and Find Full Text PDFUltrasound imaging is a valuable tool for assessing the development of the fetal during pregnancy. However, interpreting ultrasound images manually can be time-consuming and subject to variability. Automated image categorization using machine learning algorithms can streamline the interpretation process by identifying stages of fetal development present in ultrasound images.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of time- series data when used for Human Activity Recognition (HAR). The manual design of such neural architectures is an error-prone and time-consuming process. The search for optimal CNN architectures is considered a revolution in the design of neural networks.
View Article and Find Full Text PDFThe early, valid prediction of heart problems would minimize life threats and save lives, while lack of prediction and false diagnosis can be fatal. Addressing a single dataset alone to build a machine learning model for the identification of heart problems is not practical because each country and hospital has its own data schema, structure, and quality. On this basis, a generic framework has been built for heart problem diagnosis.
View Article and Find Full Text PDFThe coronavirus epidemic has spread to virtually every country on the globe, inflicting enormous health, financial, and emotional devastation, as well as the collapse of healthcare systems in some countries. Any automated COVID detection system that allows for fast detection of the COVID-19 infection might be highly beneficial to the healthcare service and people around the world. Molecular or antigen testing along with radiology X-ray imaging is now utilized in clinics to diagnose COVID-19.
View Article and Find Full Text PDFThe COVID-19 pandemic has devastated the entire globe since its first appearance at the end of 2019. Although vaccines are now in production, the number of contaminations remains high, thus increasing the number of specialized personnel that can analyze clinical exams and points out the final diagnosis. Computed tomography and X-ray images are the primary sources for computer-aided COVID-19 diagnosis, but we still lack better interpretability of such automated decision-making mechanisms.
View Article and Find Full Text PDFThe correlations between smartphone sensors, algorithms, and relevant techniques are major components facilitating indoor localization and tracking in the absence of communication and localization standards. A major research gap can be noted in terms of explaining the connections between these components to clarify the impacts and issues of models meant for indoor localization and tracking. In this paper, we comprehensively study the smartphone sensors, algorithms, and techniques that can support indoor localization and tracking without the need for any additional hardware or specific infrastructure.
View Article and Find Full Text PDFPneumonia is responsible for high infant morbidity and mortality. This disease affects the small air sacs (alveoli) in the lung and requires prompt diagnosis and appropriate treatment. Chest X-rays are one of the most common tests used to detect pneumonia.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2020
In recent years, the widespread deployment of the Internet of Things (IoT) applications has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies, communications and applications to maximize operational efficiency and enhance both the service providers' quality of services and people's wellbeing and quality of life. With the growth of smart city networks, however, comes the increased risk of cybersecurity threats and attacks.
View Article and Find Full Text PDFSensors (Basel)
November 2020
Several pathologies have a direct impact on society, causing public health problems. Pulmonary diseases such as Chronic obstructive pulmonary disease (COPD) are already the third leading cause of death in the world, leaving tuberculosis at ninth with 1.7 million deaths and over 10.
View Article and Find Full Text PDFIn this paper, we propose a pen device capable of detecting specific features from dynamic handwriting tests for aiding on automatic Parkinson's disease identification. The method used in this work uses machine learning to compare the raw signals from different sensors in the device coupled to a pen and extract relevant information such as tremors and hand acceleration to diagnose the patient clinically. Additionally, the datasets composed of raw signals from healthy and Parkinson's disease patients acquired here are made available to further contribute to research related to this topic.
View Article and Find Full Text PDFThe IEEE 802.15.6 standard has the potential to provide cost-effective and unobtrusive medical services to individuals with chronic health conditions.
View Article and Find Full Text PDFThis paper contains data on Performance Prediction for Cloud Service Selection. To measure the performance metrics of any system you need to analyze the features that affect these performance, these features are called " workload parameters". The data described here is collected from the KSA Ministry of Finance that contains 28,147 instances from 13 cloud nodes.
View Article and Find Full Text PDFIn recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities.
View Article and Find Full Text PDFEnsuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.
View Article and Find Full Text PDFBody area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem.
View Article and Find Full Text PDFThe understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants' health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data.
View Article and Find Full Text PDFWith the advances in wearable computing and various wireless technologies, there is an increasing trend to outsource body signals from wireless body area network (WBAN) to outside world including cyber space, healthcare big data clouds, etc. Since the environmental and physiological data collected by multimodal sensors have different importance, the provisioning of quality of service (QoS) for the sensory data in WBAN is a critical issue. This paper proposes multiple level-based QoS design at WBAN media access control layer in terms of user level, data level and time level.
View Article and Find Full Text PDFThe problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy.
View Article and Find Full Text PDF