This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.
View Article and Find Full Text PDFThis research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer. The fl-NiO/C were synthesized with controllable microstructures using metal-organic frameworks (MOFs) as precursors followed by a simple calcination process. The uniformly synthesized fl-NiO/C microspheres were further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM).
View Article and Find Full Text PDFVarious graphene derivatives have been known as electrode-active materials for fabricating supercapacitors. Interconnected graphene networks with adjustable porous structures, i.e.
View Article and Find Full Text PDFThis study introduces an innovative electrochemical sensor designed to detect glutamate using a nonenzymatic approach. The sensor utilizes a porous network metal-organic framework (Ni-MOF)-NiO-Ni-Carbon nanocomposite (PNM-NiO-Ni-Carbon) as an electrode modifier, which was synthesized and assessed for its effectiveness. Cyclic voltammetry measurements demonstrated that the PNM-NiO-Ni-Carbon nanocomposite, synthesized at 450 °C, displayed remarkable electrocatalytic activity for glutamate oxidation.
View Article and Find Full Text PDFThe accurate detection of Human epidermal growth factor receptor-2 (HER2) as a critical breast cancer biomarker can be essential for the early selection of therapeutic approaches. HER2 is a prominent component of a signaling network. Overexpression of the HER2 protein due to amplification of its gene leads to the development of an aggressive subtype of breast cancer.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are important tumor markers that indicate early metastasis, tumor recurrence, and treatment efficacy. To identify and separate these cells from the blood, new nanomaterials need to be developed. The present study explored the potential application of ZnFeO magnetic nanoparticles in capturing CTCs with cell surface markers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
Doxorubicin (DOX) is a common chemotherapy agent that is used in clinics for the treatment of a wide spectrum of cancers. Herein, a novel approach for improving doxorubicin loading on nanoparticles and also controlled release is suggested using crosslinking doxorubicin molecules with glutaraldehyde. We investigated the loading efficiency of doxorubicin on CoFeO nanoparticles in the absence and presence of glutaraldehyde.
View Article and Find Full Text PDFThe fabrication of electrochemical sensing platforms for cancer monitoring by quantifying circulating tumor cells (CTCs) in blood holds promise for providing a low-cost, rapid, feasible, and safe approach for cancer diagnosis. Here, we isolate cancer cells using CoFeO nanoparticles functionalized with folic acid and chitosan as an inexpensive magnetic nanoprobe. This electrochemical cytosensing platform was realized using polyaniline-folic acid nanohybrids with a three-dimensional hierarchical structure that presents abundant affinity sites toward overexpressed folate bioreceptors on cancer cells, in addition to retaining satisfied conductivity.
View Article and Find Full Text PDFElectrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5.
View Article and Find Full Text PDFBlood analysis is an established approach to monitor various diseases, ranging from heart defects and diabetes to cancer. Among various tumor markers in the blood, circulating tumor cells (CTCs) have received increasing attention due to the fact that they originate directly from the tumors. Capturing and detecting CTCs represents a promising approach in cancer diagnostics and clinical management of cancers.
View Article and Find Full Text PDFMXenes are a new class of conductive two-dimensional material which have received growing attention in biosensing for their significant surface area and unique surface chemistry. Here, gold electrodes were modified with MXene nanosheets of about 2 nm thickness and 1.5 μm lateral size for the electrochemical detection of tumor cells.
View Article and Find Full Text PDFThe release of the cargo from soft vesicles, an essential process for chemical delivery, is mediated by multiple factors. Among them, the regulation by the interaction between the chemical cargo species and the vesicular membrane, widely existing in all vesicles, has not been investigated to date. Yet, these interactions hold the potential to complicate the release process.
View Article and Find Full Text PDFAn innovative label-free electrochemical aptasensing platform has been designed for detection of insulin using functionalized mesoporous silica thin-film (MSTF) coated on a glassy carbon electrode through the one-step electrochemically assisted self-assembly (EASA) method. This strategy is contingent upon the covalent attachment of a complementary DNA (cDNA) oligonucleotide sequence on the mesoporous silica surface, for which further hybridization with its labeled aptamer as a gating molecule restricts the diffusion of the electroactive probe (Fe(CN)-) toward the electrode surface by the closing of mesochannels. Upon insulin introduction as the stimulus target molecule, hybridization between aptamer and cDNA is efficiently destroyed, which triggers the opening of nanochannels to facilitate redox probe diffusion toward the electrode with a noticeable increase in differential pulse voltammetry signal.
View Article and Find Full Text PDFMed Devices Sens
February 2021
Exhaled breath test is a typical disease monitoring method for replacing blood and urine samples that may create discomfort for patients. To monitor exhaled breath markers, gas biomedical sensors have undergone rapid progress for non-invasive and point-of-care diagnostic devices. Among gas sensors, metal oxide-based biomedical gas sensors have received remarkable attention owing to their unique properties, such as high sensitivity, simple fabrication, miniaturization, portability and real-time monitoring.
View Article and Find Full Text PDFAptasensors form a class of biosensors that function on the basis of a biological recognition. An aptasensor is advantageous because it incorporates a unique biologic recognition element, i.e.
View Article and Find Full Text PDFBreast cancer is one of lethal cancers among women with its metastasis leading to cancer-related morbidity and mortality. Circulating tumor cells (CTCs) derived from a primary tumor can be detected in the venous blood of cancer patients. Monitoring CTCs in blood samples has increased exponentially over the past decades and holds great promise in the diagnosis and treatment of metastatic breast cancer.
View Article and Find Full Text PDFFor the first time ever, this paper reports the development of an easily operated and cost-effective electrochemical assay to be used as an appropriate substitute for the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay. The proposed assay is based on the electrochemical reaction of Saccharomyces cerevisiae (S. cerevisiae) with toxic materials, and it overcomes most of the limitations of MTT such as evaporation of volatile solvents, cytotoxic effects of MTT reagents, high cost, and sensitivity to light.
View Article and Find Full Text PDFA disposable package of biosensors was developed along with the corresponding guidelines for early detection of the acute lymphoblastic leukemia cancer. This proposed cancer-screening package included a DNA sensor and an aptasensor as two main types of biosensors. The biosensors were used simultaneously.
View Article and Find Full Text PDFNeurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis.
View Article and Find Full Text PDFIn this research, an azobenzenecarboxylic acid was used as a sufficient co-adsorbent in combination with N719 dye. As it is found from the results, an optimized concentration of the co-absorbent leads to the highest efficiency. The dye-sensitized solar cells (DSSCs) parameters such as short-circuit current (Jsc), open-circuit voltage (Voc) and conversion efficiency (η) were obtained -14.
View Article and Find Full Text PDFA lable-free electrochemical aptasensor was successfully developed for the sensitive detection of carcinoembryonic antigen as a tumor biomarker. To do this, a ternary nanocomposite of hemin, graphene oxide and multi-walled carbon nanotubes was used. The aptamer can be attached to the surface of a hemin, graphene oxide and multi-walled carbon nanotubes glassy carbon electrode through -NHCO- covalent bonds to form a sensing surface.
View Article and Find Full Text PDFHerein, we will present recent progress in the compact layer (CL) or hole blocking layer (HBL) which is known as an important layer and not as an essential layer for perovskite solar cells (PSCs). The CL involves an effective role to enhance efficiency in PSCs. Thus, any change, modification, and replacement in this layer will have a profound effect on the performance and improvement of some characteristics such as photo-stability, durability and hysteresis effect.
View Article and Find Full Text PDFIn the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhanced significantly relative to the situation prevailing when an unmodified carbon paste electrode was used. Cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates.
View Article and Find Full Text PDFIdentifying and reducing the dominant recombination processes in perovskite solar cells is one of the major challenges for further device optimization. Here, we show that introducing a thin interlayer of poly(4-vinylpyridine) (PVP) between the perovskite film and the hole transport layer reduces nonradiative recombination. Employing such a PVP interlayer, we reach an open-circuit voltage of 1.
View Article and Find Full Text PDFBioelectrochemistry
June 2018
In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes.
View Article and Find Full Text PDF