Publications by authors named "Mohammad Mamouei"

Background And Aims: Effervescent formulations of paracetamol containing sodium bicarbonate have been reported to associate with increased blood pressure and a higher risk of cardiovascular diseases and all-cause mortality. Given the major implications of these findings, the reported associations were re-examined.

Methods: Using linked electronic health records data, a cohort of 475 442 UK individuals with at least one prescription of paracetamol, aged between 60 and 90 years, was identified.

View Article and Find Full Text PDF

Aims: A diverse set of factors influence cardiovascular diseases (CVDs), but a systematic investigation of the interplay between these determinants and the contribution of each to CVD incidence prediction is largely missing from the literature. In this study, we leverage one of the most comprehensive biobanks worldwide, the UK Biobank, to investigate the contribution of different risk factor categories to more accurate incidence predictions in the overall population, by sex, different age groups, and ethnicity.

Methods And Results: The investigated categories include the history of medical events, behavioural factors, socioeconomic factors, environmental factors, and measurements.

View Article and Find Full Text PDF

Diabetes is a heterogenous, multimorbid disorder with a large variation in manifestations, trajectories, and outcomes. The aim of this study is to validate a novel machine learning method for the phenotyping of diabetes in the context of comorbidities. Data from 9967 multimorbid patients with a new diagnosis of diabetes were extracted from Clinical Practice Research Datalink.

View Article and Find Full Text PDF

Objective: In individuals with complex underlying health problems, the association between systolic blood pressure (SBP) and cardiovascular disease is less well recognised. The association between SBP and risk of cardiovascular events in patients with chronic obstructive pulmonary disease (COPD) was investigated.

Methods And Analysis: In this cohort study, 39 602 individuals with a diagnosis of COPD aged 55-90 years between 1990 and 2009 were identified from validated electronic health records (EHR) in the UK.

View Article and Find Full Text PDF

Background: The quality of evidence regarding the associations between road traffic noise and hypertension is low due to the limitations of cross-sectional study design, and the role of air pollution remains to be further clarified.

Objectives: The purpose of this study was to evaluate the associations of long-term road traffic noise exposure with incident primary hypertension; we conducted a prospective population-based analysis in UK Biobank.

Methods: Road traffic noise was estimated at baseline residential address using the common noise assessment method model.

View Article and Find Full Text PDF

The proliferation of street view images (SVIs) and the constant advancements in deep learning techniques have enabled urban analysts to extract and evaluate urban perceptions from large-scale urban streetscapes. However, many existing analytical frameworks have been found to lack interpretability due to their end-to-end structure and "black-box" nature, thereby limiting their value as a planning support tool. In this context, we propose a five-step machine learning framework for extracting neighborhood-level urban perceptions from panoramic SVIs, specifically emphasizing feature and result interpretability.

View Article and Find Full Text PDF

Aims: Deep learning has dominated predictive modelling across different fields, but in medicine it has been met with mixed reception. In clinical practice, simple, statistical models and risk scores continue to inform cardiovascular disease risk predictions. This is due in part to the knowledge gap about how deep learning models perform in practice when they are subject to dynamic data shifts; a key criterion that common internal validation procedures do not address.

View Article and Find Full Text PDF

Background: Whether the association between systolic blood pressure (SBP) and risk of cardiovascular disease is monotonic or whether there is a nadir of optimal blood pressure remains controversial. We investigated the association between SBP and cardiovascular events in patients with diabetes across the full spectrum of SBP.

Methods: A cohort of 49 000 individuals with diabetes aged 50 to 90 years between 1990 and 2005 was identified from linked electronic health records in the United Kingdom.

View Article and Find Full Text PDF

Electronic health records (EHR) represent a holistic overview of patients' trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrelationships of medical records and patient outcomes, deep learning models have shown clear merits in achieving this goal.

View Article and Find Full Text PDF

Observational causal inference is useful for decision-making in medicine when randomized clinical trials (RCTs) are infeasible or nongeneralizable. However, traditional approaches do not always deliver unconfounded causal conclusions in practice. The rise of "doubly robust" nonparametric tools coupled with the growth of deep learning for capturing rich representations of multimodal data offers a unique opportunity to develop and test such models for causal inference on comprehensive electronic health records (EHRs).

View Article and Find Full Text PDF

Multicollinearity refers to the presence of collinearity between multiple variables and renders the results of statistical inference erroneous (Type II error). This is particularly important in environmental health research where multicollinearity can hinder inference. To address this, correlated variables are often excluded from the analysis, limiting the discovery of new associations.

View Article and Find Full Text PDF
Article Synopsis
  • The use of deep learning in clinical decision-making is hindered by the challenge of quantifying confidence in model predictions, with current methods like deep Bayesian neural networks and sparse Gaussian processes facing limitations.
  • A new approach that combines deep Bayesian learning with deep kernel learning aims to enhance uncertainty estimation by addressing the weaknesses of each method, particularly in terms of model interpretability and incorporating uncertainty from raw data.
  • Experiments show this combined method outperforms existing techniques in capturing uncertainty and improving accuracy in predicting health conditions using electronic medical records, while also providing better insights for risk factor analysis.
View Article and Find Full Text PDF

Ambient air pollution is projected to become a major environmental risk in sub-Saharan Africa (SSA). Research into its health impacts is hindered by limited data. We aimed to investigate the cross-sectional relationship between particulate matter with a diameter ≤ 2.

View Article and Find Full Text PDF

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs.

View Article and Find Full Text PDF

Near Infrared (800-2500 nm) spectroscopy has been extensively used in biomedical applications, as it offers rapid, in vivo, bed-side monitoring of important haemodynamic parameters, which is especially important in critical care settings. However, the choice of NIR spectrometer needs to be investigated for biomedical applications, as both the dual beam dispersive spectrophotomer and the FTNIR spectrometer have their own advantages and disadvantages. In this study, predictive analysis of lactate concentrations in whole blood were undertaken using multivariate techniques on spectra obtained from the two spectrometer types simultaneously and results were compared.

View Article and Find Full Text PDF

Biochemical and medical literature establish lactate as a fundamental biomarker that can shed light on the energy consumption dynamics of the body at cellular and physiological levels. It is therefore, not surprising that it has been linked to many critical conditions ranging from the morbidity and mortality of critically ill patients to the diagnosis and prognosis of acute ischemic stroke, septic shock, lung injuries, insulin resistance in diabetic patients, and cancer. Currently, the gold standard for the measurement of lactate requires blood sampling.

View Article and Find Full Text PDF

Uninterrupted monitoring of serum lactate levels is a prerequisite in the critical care of patients prone to sepsis, cardiogenic shock, cardiac arrest, or severe lung disease. Yet there exists no device to continuously measure blood lactate in clinical practice. Optical spectroscopy together with multivariate analysis is proposed as a viable noninvasive tool for estimation of lactate in blood.

View Article and Find Full Text PDF

Quantification of lactate/lactic acid in critical care environments is essential as lactate serves as an important biochemical marker for the adequacy of the haemodynamic circulation in shock and of cell respiration at the onset of sepsis/septic shock. Hence, in this study, ATR-FTIR was explored as a potential tool for lactate measurement, as the current techniques depend on sample preparation and fails to provide rapid response. Moreover, the effects of pH on PBS samples (7.

View Article and Find Full Text PDF