Background & Objective: Esophageal squamous cell carcinoma (ESCC) is one of the world's deadliest cancer diseases. Deregulation of developmental signaling pathways such as Wnt/β-catenin is frequently implicated in a wide range of human cancers. The present study was designed to analyze the expression of the Pygopus2 (PYGO2) protein, the main co-activator of the Wnt/β-catenin signaling pathway, in ESCC tissues and evaluate its probable correlation with clinicopathological features of patients.
View Article and Find Full Text PDFBackground: Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone. Sustanon, dissolved in peanut oil, is an AAS used by athletes to build muscle mass. This study aims to examine the effects of Sustanon on male reproductive health.
View Article and Find Full Text PDF5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.
View Article and Find Full Text PDFBackground: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Cancer is a global health problem despite the most developed therapeutic modalities. The delivery of specific therapeutic agents to a target increases the effectiveness of cancer treatment by reducing side effects and post-treatment issues. Our aim in this study was to design a recombinant protein consisting of nanobody molecules and exotoxin that targets the surface GRP78 receptor on tumor cells.
View Article and Find Full Text PDFEsophageal cancer, an increasingly prevalent malignancy, is a major concern for global health. The development of esophageal squamous cell carcinoma (ESCC) involves various genetic abnormalities that affect key cell signaling pathways, including Wnt, Hh, Apoptosis, MAPK, EGFR, AKT, Notch, and EMT. Additionally, this malignancy involves some changes in the expression of long noncoding RNAs (LncRNAs).
View Article and Find Full Text PDFThis research delves into the therapeutic implications of utilizing small interfering RNA (siRNA) to target the ribosomal protein S19 (RPS19) gene in chronic myeloid leukemia (CML) using the K562 cell line model. The primary objective was to investigate how gene silencing affects apoptosis promotion and cell cycle arrest. The study employed bioinformatics tools and databases to explore the interactions involving RPS19 and neighboring proteins.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) is the second leading cause of cancer-related deaths in Iran, often diagnosed in advanced stages with a poor prognosis. Growth and differentiation factor 3 () is a member of the transforming growth factor-beta (TGF-β) superfamily. It acts as an inhibitor of bone morphogenetic proteins (BMPs) signaling pathway associated with pluripotent embryonic and cancer stem cells (CSCs) characteristics.
View Article and Find Full Text PDFHuman enterokinase light chain (hEKL) cDNA sequence was designed with the help of codon optimization towards Escherichia coli codon preference and ribosome binding site design and artificially synthesized with a thioredoxin fusion tag at the N-terminal and a five his-tag peptide at the C-terminal. The synthetic hEKL gene was cloned into the pET-15 expression vector and transferred into the three different expression strains of E. coli BL21(DE3), NiCo21, and SHuffle T7 Express.
View Article and Find Full Text PDFBackground: Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development.
View Article and Find Full Text PDFBackground: Background: Type I inositol polyphosphate-5-phosphatase A (INPP5A) is involved in different cellular events, including cell proliferation. Since INPP5A, HLAG1, IL-10, and matrix metalloproteinases (MMP)-21 genes play fundamental roles in esophageal squamous cell carcinoma (ESCC) tumorigenesis, we aimed in this study to clarify the possible interplay of these genes and explore the potential of these chemistries as a predictor marker for diagnosis in ESCC disease.
Methods: Methods: Gene expression analysis of INPP5A, HLAG-1, IL-10, and MMP-21 was performed using relative comparative real-time PCR in 56 ESCCs compared to their margin normal tissues.
Purpose: Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy.
Materials And Methods: EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR.
Background: Epithelial-mesenchymal transition (EMT) is a biological process in embryonic development and cancer progression, and different gene families, such as HOX genes, are closely related to this process.
Objectives: Our aim in this study was to investigate the correlation between TWIST1 and EVX1 mRNA expression in ESCC patients and also examine the probable regulatory function of TWIST1 on EVX1 expression in human ESCC cell line.
Materials And Methods: TWIST1 and EVX1 gene expression patterns were assessed in ESCC patients by relative comparative Real-time PCR then correlated with their clinical characteristics.
EZH2, as a histone methyltransferase, has been associated with cancer development and metastasis possibly through the regulation of microRNAs and cellular pathways such as EMT. In this study, the effect of EZH2 expression on miR-200c and important genes of the EMT pathway was investigated in esophageal squamous cell carcinoma (ESCC). Comparative qRT-PCR was used to examine EZH2 expression in ESCC lines (YM-1 and KYSE-30) following the separately transfected silencing and ectopic expressional EZH2 vectors in ESCC.
View Article and Find Full Text PDFBackground: Glioblastoma is the most common primary malignant neoplasm of the central nervous system. Despite progress in diagnosis and treatment, glioblastoma still has a poor prognosis. This study aimed to examine whether a signature of three candidate miRNAs (i.
View Article and Find Full Text PDFBackground: Epithelial-mesenchymal transition (EMT) has a fundamental role in tumor initiation, progression, and metastasis. Helicobacter pylori (HP) induces EMT and thus causes gastric cancer (GC) by deregulating multiple signaling pathways involved in EMT. TWIST1 and MAML1 have been confirmed to be critical inducers of EMT via diverse signaling pathways such as Notch signaling.
View Article and Find Full Text PDFPurpose: Esophageal squamous cell carcinoma (ESCC) is categorized among ten common aggressive malignancies, with a higher incidence and mortality rates in the developing than in developed countries. The inositol polyphosphate 5-phosphatase (INPP5A), as an intracellular-calcium mobilizer and modifier enzyme, facilitates cell responses to various stimuli. Epithelial-mesenchymal transition (EMT), a transformation procedure, has a vital role in cancer progression and metastasis when epithelial cells lose their traits in favor of obtaining mesenchymal features.
View Article and Find Full Text PDFBackground: Large intergenic non-coding RNA regulator of reprogramming (LINC-ROR), as a cancer-related Long non-coding RNA, has vital roles in stem cell survival, pluripotency, differentiation, and self-renewal in human embryonic stem cell. However, cancer-related molecular mech¬anisms, its functional roles, and clinical value of LINC-ROR in gastric cancer (GC) remain unclear. In this study, we aimed to investigate probable interplay between LINC-ROR with SALL4 stemness regulator and their role with the development of the disease.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFObjectives: In this study, we analyzed the whole exomes of CTSC gene in a family with history of PLS.
Materials And Methods: Genomic DNA was extracted from peripheral blood and genotype analysis was performed. The mutated protein sequence was used to find the best possible tertiary structure for homology modeling.
Stemness phenotype is considered as the centerpiece of cancer biology due to its potential in conventional chemo-radiotherapy resistance and tumor recurrence after clinical intervention. This feature in tumor mass belongs to activation of core regulatory stemness factors and different cell signaling pathways in cancer stem cells. We aimed in this study to elucidate contribution of Notch signaling pathway in stemness state of esophageal squamous cell carcinoma (ESCC) through their relevance with stem cell markers SOX2 and SALL4.
View Article and Find Full Text PDFBackground: MEIS1 (Myeloid ecotropic viral integration site 1) as a homeobox (HOX) transcription factor plays regulatory roles in a variety of cellular processes including development, differentiation, survival, apoptosis and hematopoiesis, as well as stem cell regulation. Few studies have established pluripotency and self-renewal regulatory roles for MEIS1 in human esophageal squamous cell carcinoma (ESCC), and our aim in this study was to evaluate the functional correlation between MEIS1 and the stemness markers in ESCC patients and cell line KYSE-30.
Methods: Expression pattern of MEIS1 and SALL4 gene expression was analyzed in different pathological features of ESCC patients.
Notch signaling pathway mediates different biological processes including stem cell self-renewal, progenitor cell fate decision, and terminal differentiation. TWIST1 plays a key role in tumor development and metastasis through inducing epithelial-mesenchymal transition (EMT). Expression of the core transcriptional complex of Notch pathway and its target genes, as well as TWIST1 overexpression, are closely related to the aggressive clinicopathological variables of esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFTwist-related protein 1 (TWIST1), a highly conserved basic helix-loop-helix transcription factor, stimulates epithelial-mesenchymal transition (EMT) and plays a crucial role in the regulation of the extracellular matrix (ECM) and cell-cell adhesion. Our aim in this study was to evaluate the functional correlation between TWIST1 and MMP genes in human ESCC cell lines, KYSE-30 and YM-1. To generate recombinant retroviral particles, the Pruf-IRES-GFP-hTWIST1 was co-transfected into HEK293T along with pGP and pMD2.
View Article and Find Full Text PDFEsophageal cancer is the eighth most common cancer and the sixth most frequent cause of cancer mortality worldwide. Exposure to polycyclic aromatic hydrocarbons formed by incomplete combustion of organic matter is an important risk factor. Genetic polymorphisms in genes encoding PAH-metabolizing enzymes like glutathione S-transferases (GSTM1, GSTP1, GSTT1) which conjugate glutathione to PAHs for reduction of oxidative stress may affect an individual's response to PAH exposure.
View Article and Find Full Text PDF