Publications by authors named "Mohammad Latif"

The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local "Dholkolmi" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy.

View Article and Find Full Text PDF

Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks.

View Article and Find Full Text PDF

BRRI31R is one of the Bangladesh's most promising restorer lines due to its abundant pollen producing capacity, strong restoring ability, good combining ability, high outcrossing rate and genetically diverse from cytoplasmic male sterile (CMS) line. But the drawback of this line is that it is highly susceptible to bacterial blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae.

View Article and Find Full Text PDF

Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20.

View Article and Find Full Text PDF

Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aβ) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aβ species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aβ peptide.

View Article and Find Full Text PDF

Agrichemical adjuvants that combine a highly selective, efficient, and active mode of operation are critically needed to realize a more sustainable approach to their usage. Herein, we report the synthesis and full characterization of two new metal-organic frameworks (MOFs), termed UPMOF-1 and UPMOF-2, that were constructed from eco-friendly Ca ions and naturally occurring, low-molecular weight plant acids, l-malic and d-tartaric acid, respectively. Upon structural elucidation of both MOFs, a widely used fungicide, hexaconazole (Hex), was loaded on the structures, reaching binding affinities of -5.

View Article and Find Full Text PDF

In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO and Cl, while the lowest loading was found for F molecules. The analysis of interaction energies indicated that SO molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure.

View Article and Find Full Text PDF

Rice Tungro disease poses a threat to rice production in Asia. Marker assisted backcross breeding is the most feasible approach to address the tungro disease. We targeted to introgress tungro resistance locus tsv1 from Matatag 1 into a popular but tungro susceptible rice variety of Bangladesh, BRRI dhan71.

View Article and Find Full Text PDF

Unlabelled: Bacterial blight, one of the oldest and most severe diseases of rice poses a major threat to global rice production and food security. Thereafter, sustainable management of this disease has given paramount importance globally. In the current study, we explored 792 landraces to evaluate their disease reaction status against three highly virulent strains (, and ) of pv ().

View Article and Find Full Text PDF

Unlabelled: Rice blast disease is one of the major bottlenecks of rice production in the world including Bangladesh. To develop blast resistant lines, a cross was made between a high yielding but blast susceptible variety MR263 and a blast resistant variety Pongsu seribu 2. Marker-assisted backcross breeding was followed to develop F, BCF, BCF, BCF, BCF BCF and BCF population.

View Article and Find Full Text PDF

Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (-) were synthesized and evaluated for their potency against MRSA.

View Article and Find Full Text PDF

Materials And Methods: A cross-sectional study was carried out. A 27-item prepilot tested close-ended questionnaire was designed and administered online to collect data on knowledge of asepsis, sterilization, instrument handling, disinfection, hand-hygiene practices, dental practice, age, education, and experience level from March 2020 to June 2020.

Results: Out of 70 dental assistants, the majority were aged between 21 and 29 years (44.

View Article and Find Full Text PDF

The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the NBDG uptake assay and insulin secretion activities through studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM.

View Article and Find Full Text PDF

A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC value of 5.

View Article and Find Full Text PDF

Herein, we detail an atomic-level investigation of the cutinase enzyme encapsulated within a model metal-organic framework (MOF) platform using quantum mechanics calculations and molecular dynamics simulations. Cutinase, when encapsulated in an isoreticularly expanded MOF-74 (cutinase@IRMOF-74-VI), was proven to maintain its structural stability at temperatures that would otherwise denature the enzyme in its unprotected native state. Hydrogen bonding and salt bridge interactions, most notably involving arginine residues at the surface of the enzyme, were critical for stabilizing cutinase within the pore channels of IRMOF-74-VI.

View Article and Find Full Text PDF

Genetic variation in blast resistance was clarified in 334 Bangladesh rice accessions from 4 major ecotypes (Aus, Aman, Boro and Jhum). Cluster analysis of polymorphism data of 74 SSR markers separated these accessions into cluster I (corresponding to the Japonica Group) and cluster II (corresponding to the Indica Group). Cluster II accessions were represented with high frequency in all ecotypes.

View Article and Find Full Text PDF

Background: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

View Article and Find Full Text PDF
Article Synopsis
  • Blast is a major biotic stress affecting rice yields globally, particularly in Malaysia, prompting a focus on enhancing blast resistance in key rice varieties.
  • A marker-assisted backcrossing approach combined genes Pi-b and Pi-kh from the Pongsu Seribu 2 variety into the popular MR219, resulting in 15 plants that are homozygous for both resistance genes.
  • The newly developed blast-resistant lines demonstrated strong resistance against a specific blast pathotype while maintaining key characteristics of MR219, ensuring they are suitable for adoption by local farmers and contributing to sustained rice production in Malaysia.
View Article and Find Full Text PDF

After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures.

View Article and Find Full Text PDF

When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent.

View Article and Find Full Text PDF

The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors.

View Article and Find Full Text PDF

Background: Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL).

View Article and Find Full Text PDF

Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry.

View Article and Find Full Text PDF