Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2023
The fine-tuning of the intricate network of plant growth hormones empowers the balanced responses of plants to environmental and developmental signals. Salicylic acid and jasmonates are emerging as advanced hormones that provide plants with resistance to environmental stresses. Senescence is characterized by coordinated and systematic crosstalk between phytohormones that remodels the biochemical and physiological mechanisms in plants, resulting in cell death.
View Article and Find Full Text PDFFlower senescence is a fundamental aspect of the developmental trajectory in flowers, occurring after the differentiation of tissues and maturation of petals, and preceding the growth and development of seeds. It is accompanied by various alterations at the cytological, physiological, and molecular levels, similar to other forms of programmed cell death (PCD). It involves an intricate interplay of various plant growth regulators, with ethylene being the key orchestrator in ethylene-dependent petal senescence.
View Article and Find Full Text PDFPostharvest losses of cut flowers is one of the considerable challenges restricting their efficient marketability. Consequently, such challenges have triggered a constant hunt for developing compatible postharvest treatments to mitigate postharvest losses. Interestingly, recent studies entrench extensive role of salicylic acid (SA) in mitigating postharvest losses in various flower systems.
View Article and Find Full Text PDFPlant leaves provide a unique insight into the changes that occur in organs, tissues and cells as they approach senescence. As part of the parental outlay, plants instigate leaf senescence to reallocate resources from older tissues to new organs towards the termination of the growing season. The aim of crop breeding initiatives is to optimize senescence for specific species.
View Article and Find Full Text PDFNitric oxide releasing compound sodium nitroprusside (SNP) is regarded as novel chemical to beat the daunting challenges of postharvest losses in cut flowers. In the recent years, it has yielded propitious results as postharvest vase preservative for cut flowers. Our study explicates the efficacy of SNP in mitigating postharvest senescence in Consolida ajacis (L.
View Article and Find Full Text PDFThe present investigation primarily focussed on evaluating the efficacy of exogenous proline on the flower longevity of L. Floral buds were harvested at the paint brush stage (i.e.
View Article and Find Full Text PDFIn recent years, there has been a considerable and renewed upsurge in research to ascertain the physiological and biochemical role of Nitric oxide (NO) in plants. The present investigation is focused to study the role of NO on neck bending associated with senescence and postharvest performance in isolated flowers of . The flower buds harvested at one day before anthesis stage were supplied with sodium nitroprusside (SNP) as a source of NO at different concentrations viz.
View Article and Find Full Text PDF