Publications by authors named "Mohammad Kherelden"

Graphene nanostructures offer wide range of applications due to their distinguished and tunable electronic properties. Recently, atomic and molecular graphene were modeled following simple free-electron scattering by periodic muffin tin potential leading to remarkable agreement with density functional theory. Here we extend the analogy of the -electronic structures and quantum effects between atomic graphene quantum dots (QDs) and homogeneous planer metallic counterparts of similar size and shape.

View Article and Find Full Text PDF

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape.

View Article and Find Full Text PDF

Engineering quantum phenomena of two-dimensional nearly free electron states has been at the forefront of nanoscience studies ever since the first creation of a quantum corral. Common strategies to fabricate confining nanoarchitectures rely on manipulation or on applying supramolecular chemistry principles. The resulting nanostructures do not protect the engineered electronic states against external influences, hampering the potential for future applications.

View Article and Find Full Text PDF

Tailoring Shockley surface-state (SS) electrons utilizing complex interfacial supramolecular tessellations was explored by low-temperature scanning tunnelling microscopy and spectroscopy, combined with computational modelling using electron plane wave expansion (EPWE) and empirical tight-binding (TB) methods. Employing a recently introduced gas-mediated on-surface reaction protocol, three distinct types of open porous networks comprising paired organometallic species as basic tectons were selectively synthesized. In particular, these supramolecular networks feature semiregular Archimedean tilings, providing intricate quantum dots (QDs) coupling scenarios compared to hexagonal porous superlattices.

View Article and Find Full Text PDF

Monolayer hexagonal boron nitride (hBN) is attracting considerable attention because of its potential applications in areas such as nano- and opto-electronics, quantum optics and nanomagnetism. However, the implementation of such functional hBN demands precise lateral nanostructuration and integration with other two-dimensional materials, and hence, novel routes of synthesis beyond exfoliation. Here, a disruptive approach is demonstrated, namely, imprinting the lateral pattern of an atomically stepped one-dimensional template into a hBN monolayer.

View Article and Find Full Text PDF

Two-dimensional honeycomb molecular networks confine a substrate's surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored.

View Article and Find Full Text PDF

On-surface metal-organic nanoporous networks generally refer to adatom coordinated molecular arrays, which are characterized by the presence of well-defined and regular nanopores. These periodic structures constructed using two types of components confine the surface electrons of the substrate within their nanocavities. However, the confining (or scattering) strength that individual building units exhibit is a priori unknown.

View Article and Find Full Text PDF