Publications by authors named "Mohammad K Dallatu"

KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions.

View Article and Find Full Text PDF

Background: Nitric oxide just as prolyl hydroxylase domain-containing protein (PHD) is a regulator of hypoxia inducible factor-1 α (HIF-1α), a transcription factor complex that controls the expression of most genes involved in hypoxia and cardiovascular diseases. In the absence of nitric oxide, it is not clear how HIF-1α and PHD are regulated and to what extent they contribute to the ensuing disorder.

Method: Using the nitric oxide withdrawal/high salt diet model of hypertensive renal injury, this study tested the hypothesis that removal of the inhibition by nitric oxide on PHD predisposes to increased PHD but reduced HIF-1α expression, hypertension and renal injury.

View Article and Find Full Text PDF