Publications by authors named "Mohammad Javad Shafiee"

Since the World Health Organization declared COVID-19 a pandemic in 2020, the global community has faced ongoing challenges in controlling and mitigating the transmission of the SARS-CoV-2 virus, as well as its evolving subvariants and recombinants. A significant challenge during the pandemic has not only been the accurate detection of positive cases but also the efficient prediction of risks associated with complications and patient survival probabilities. These tasks entail considerable clinical resource allocation and attention.

View Article and Find Full Text PDF

Medical image analysis continues to hold interesting challenges given the subtle characteristics of certain diseases and the significant overlap in appearance between diseases. In this study, we explore the concept of self-attention for tackling such subtleties in and between diseases. To this end, we introduce, a multi-scale encoder-decoder self-attention (MEDUSA) mechanism tailored for medical image analysis.

View Article and Find Full Text PDF

The world is still struggling in controlling and containing the spread of the COVID-19 pandemic caused by the SARS-CoV-2 virus. The medical conditions associated with SARS-CoV-2 infections have resulted in a surge in the number of patients at clinics and hospitals, leading to a significantly increased strain on healthcare resources. As such, an important part of managing and handling patients with SARS-CoV-2 infections within the clinical workflow is severity assessment, which is often conducted with the use of chest X-ray (CXR) images.

View Article and Find Full Text PDF

Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive amount of computational resources prohibiting their deployment in factories.

View Article and Find Full Text PDF

Background: Quantitative radiomic features provide a plethora of minable data extracted from multi-parametric magnetic resonance imaging (MP-MRI) which can be used for accurate detection and localization of prostate cancer. While most cancer detection algorithms utilize either voxel-based or region-based feature models, the complexity of prostate tumour phenotype in MP-MRI requires a more sophisticated framework to better leverage available data and exploit a priori knowledge in the field.

Methods: In this paper, we present MPCaD, a novel Multi-scale radiomics-driven framework for Prostate Cancer Detection and localization which leverages radiomic feature models at different scales as well as incorporates a priori knowledge of the field.

View Article and Find Full Text PDF

A novel platform, DeepPredict, for predicting hospital bed exit events from video camera systems is proposed. DeepPredict processes video data with a deep convolutional neural network consisting of five main layers: a 1 × 1 3D convolutional layer used for generating feature maps from raw video data, a context-aware pooling layer used for rectifying data from different camera angles, two fully connected layers used for applying pre-trained deep features, and an output layer used to provide a likelihood of a bed exit event. Results for a model trained on 180 hours of data demonstrate accuracy, sensitivity, and specificity of 86.

View Article and Find Full Text PDF

While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data.

View Article and Find Full Text PDF

The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework.

View Article and Find Full Text PDF

Magnetic resonance (MR) images of higher quality is demanded for helping with more accurate and earlier diagnosis of different diseases. The overall quality of MR images is limited due to the existence of different degradation factors such as (1) MR aberrations due to intrinsic properties of the MR scanner, (2) magnetic field inhomogeneity, and (3) inherent MRI noise. Correcting each MRI degradation factor could be solely useful for the quality enhancement of MR imaging with a limited impact.

View Article and Find Full Text PDF

Background: Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology for the screening and diagnosis of frequently occurring cancers. However, image quality may suffer from long acquisition times for MRIs due to patient motion, which also leads to patient discomfort. Reducing MRI acquisition times can reduce patient discomfort leading to reduced motion artifacts from the acquisition process.

View Article and Find Full Text PDF

Diffusion weighted magnetic resonance imaging (DW-MR) is a powerful tool in imaging-based prostate cancer screening and detection. Endorectal coils are commonly used in DW-MR imaging to improve the signal-to-noise ratio (SNR) of the acquisition, at the expense of significant intensity inhomogeneities (bias field) that worsens as we move away from the endorectal coil. The presence of bias field can have a significant negative impact on the accuracy of different image analysis tasks, as well as prostate tumor localization, thus leading to increased inter- and intra-observer variability.

View Article and Find Full Text PDF

3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections.

View Article and Find Full Text PDF

In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow.

View Article and Find Full Text PDF

A promising, recently explored, alternative to ultra-high b-value diffusion weighted imaging (UHB-DWI) is apparent ultra-high b-value diffusion-weighted image reconstruction (AUHB-DWR), where a computational model is used to assist in the reconstruction of apparent DW images at ultra-high b -values. Firstly, we present a novel approach to AUHB-DWR that aims to improve image quality. We formulate the reconstruction of an apparent DW image as a hidden conditional random field (HCRF) in which tissue model diffusion parameters act as hidden states in this random field.

View Article and Find Full Text PDF

In this study, we investigate a variable-resolution approach to video compression based on Conditional Random Field and statistical conditional sampling in order to further improve compression rate while maintaining high-quality video. In the proposed approach, representative key-frames within a video shot are identified and stored at full resolution. The remaining frames within the video shot are stored and compressed at a reduced resolution.

View Article and Find Full Text PDF