Publications by authors named "Mohammad Javad Kiani"

Considering the widespread use of PHEVs in advanced societies and the issues ahead, researchers' thinking has focused more on this issue. The important issue is that the use of EVs is increasing due to the advantages, but the necessary infrastructure for their charging stations in the distribution networks does not exist. The high penetration level of EVs can create a potential risk for the existing distribution network; the fair charging of EVs has a special value.

View Article and Find Full Text PDF

Tailored healthcare, an approach focused on individual patients, requires integrating emerging interdisciplinary technologies to develop accurate and user-friendly diagnostic tools. KRAS mutations, prevalent in various common cancers, are crucial determinants in selecting patients for novel KRAS inhibitor therapies. This study presents a novel state-of-the-art Lab-on-a-Disc system utilizing peptide nucleic acids-loop backward (PNA-LB) mediated allele-specific loop-mediated isothermal amplification (LAMP) for detecting the frequent G12D KRAS mutation, signifying its superiority over alternative mutation detection approaches.

View Article and Find Full Text PDF

Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis.

View Article and Find Full Text PDF

Developing automated platforms for point-of-need testing is a crucial global demand. Digital microfluidics is a promising solution for expanding integrated testing devices featuring ultimate control over the chemical and biological reactions in micro/nanoliter droplets. In this study, robotic digital microfluidics (RDMF) is introduced for the mechanical manipulation of the droplets precisely and inexpensively.

View Article and Find Full Text PDF

Aims: This study was designed to provide both ex-vivo and in-vivo methods for the extraction and expansion of spermatogonial stem cells (SSCs).

Methods: For in-vivo experiments, azoospermic mouse model was performed with Busulfan. Isolation, culture, and characterization of neonate mouse SSC were also achieved.

View Article and Find Full Text PDF

Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties.

View Article and Find Full Text PDF

Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET).

View Article and Find Full Text PDF

Graphene has attracted great interest because of unique properties such as high sensitivity, high mobility, and biocompatibility. It is also known as a superior candidate for pH sensing. Graphene-based ion-sensitive field-effect transistor (ISFET) is currently getting much attention as a novel material with organic nature and ionic liquid gate that is intrinsically sensitive to pH changes.

View Article and Find Full Text PDF