Publications by authors named "Mohammad Iman Mokhlespour Esfahani"

Slips, trips, and falls are some of the most substantial and prevalent causes of occupational injuries and fatalities, and these events may contribute to low-back problems. We quantified lumbar kinematics (i.e.

View Article and Find Full Text PDF

Physical activities can have important impacts on human health. For example, a physically active lifestyle, which is one of the most important goals for overall health promotion, can diminish the risk for a range of physical disorders, as well as reducing health-related expenditures. Thus, a long-term goal is to detect different physical activities, and an important initial step toward this goal is the ability to classify such activities.

View Article and Find Full Text PDF

Detecting and assessing an individual's gait can be important for medical diagnostic purposes and for developing and guiding follow-on rehabilitation protocols. Thus, an accurate, objective gait classification system has the potential to facilitate earlier diagnosis and improved clinical decision-making. Systems using smart garments represent an emerging technology for physical activity assessment and that may be relevant for gait classification.

View Article and Find Full Text PDF

Physical monitoring systems represent potentially powerful assessment devices to detect and describe occupational physical activities. A promising technology for such use is smart textile systems (STSs). Our goal in this exploratory study was to assess the feasibility and accuracy of using two STSs to classify several manual material handling (MMH) tasks.

View Article and Find Full Text PDF

The interest in wearable systems among the biomedical engineering and clinical community continues to escalate as technical refinements enhance their potential use for both indoor and outdoor applications. For example, an important wearable technology known as a microelectromechanical system (MEMS) is demonstrating promising applications in the area of biomedical engineering. Accordingly, this study was designed to investigate the Sharif-Human Movement Instrumentation System (SHARIF-HMIS), consisting of inertial measurement units (IMUs), stretchable clothing, and a data logger-all of which can be used outside the controlled environment of a laboratory, thus enhancing its overall utility.

View Article and Find Full Text PDF

Wearable sensors and systems have become increasingly popular in recent years. Two prominent wearable technologies for human activity monitoring are smart textile systems (STSs) and inertial measurement units (IMUs). Despite ongoing advances in both, the usability aspects of these devices require further investigation, especially to facilitate future use.

View Article and Find Full Text PDF

Use of exoskeletal vests (designed to support overhead work) can be an effective intervention approach for tasks involving arm elevation, yet little is known on the potential beneficial impacts of their use on physical demands and task performance. This laboratory study (n = 12) evaluated the effects of a prototype exoskeletal vest during simulated repetitive overhead drilling and light assembly tasks. Anticipated or expected benefits were assessed, in terms of perceived discomfort, shoulder muscle activity, and task performance.

View Article and Find Full Text PDF

Adopting a new technology (exoskeletal vest designed to support overhead work) in the workplace can be challenging since the technology may pose unexpected safety and health consequences. A prototype exoskeletal vest was evaluated for potential unexpected consequences with a set of evaluation tests for: usability (especially, donning & doffing), shoulder range of motion (ROM), postural control, slip & trip risks, and spine loading during overhead work simulations. Donning/doffing the vest was easily done by a wearer alone.

View Article and Find Full Text PDF

Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body-Worn Sensors (BWS) is designed and developed.

View Article and Find Full Text PDF