Publications by authors named "Mohammad Hossein Zarifi"

Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E.

View Article and Find Full Text PDF

A real-time and label-free microstrip sensor capable of detecting and monitoring subsurface growth of Escherichia coli (E. coli) on solid growth media such as Luria-Bertani (LB) agar is presented. The microwave ring resonator was designed to operate at 1.

View Article and Find Full Text PDF

Protective clothing must repel hazardous liquids such as oils, acids, and solvents, which often exhibit low surface tension. The low surface tension liquid repellency of textiles is currently characterized qualitatively, considering only the first thirty seconds of wetting. This study demonstrates that embedded sensors within protective fabrics can more fully characterize liquid repellency while simultaneously detecting the hazardous substance.

View Article and Find Full Text PDF

Microwave resonator sensors are attractive for their contactless and label-free capability of monitoring bacterial growth in liquid media. This paper outlines a new label-free microwave biosensor based on a pair of planar split ring resonators for non-invasive monitoring of bacterial growth on a solid agar media. The sensor is comprised of two split ring resonators with slightly different resonant frequencies for differential operation.

View Article and Find Full Text PDF

Infection diagnosis and antibiotic susceptibility testing (AST) are time-consuming and often laborious clinical practices. This paper presents a microwave-microfluidic biosensor for rapid, contactless and non-invasive device for testing the concentration and growth of Escherichia Coli (E. Coli) in medium solutions of different pH to increase the efficacy of clinical microbiology practices.

View Article and Find Full Text PDF

A novel flow sensor is presented to measure the flow rate within microchannels in a real-time, noncontact and nonintrusive manner. The microfluidic device is made of a fluidic microchannel sealed with a thin polymer layer interfacing the fluidics and microwave electronics. Deformation of the thin circular membrane alters the permittivity and conductivity over the sensitive zone of the microwave resonator device and enables high-resolution detection of flow rate in microfluidic channels using non-contact microwave as a standalone system.

View Article and Find Full Text PDF