The CRISPR system finds extensive application in molecular biology, but its continuous activity can yield adverse effects. Leveraging programmable CRISPR/Cas9 function via nano-device mediation effectively mitigates these drawbacks. The integration of RNA-sensing platforms into CRISPR thus empowers it as a potent tool for processing internal cell data and modulating gene activity.
View Article and Find Full Text PDFGenetic studies of familial forms of Parkinson's disease (PD) have shown that the ZNF543 gene is a candidate gene that operates relevant to this disease. However, until now, there is no evidence for ZNF543 gene function in PD, and mechanisms resulting from its mutation have not been elucidated. Given the same genetic location of the ZNF543 gene with TRIM28 and their effects on PD pathogenesis, we surmised that ZNF543 might act as a transcription factor for TRIM28 gene expression.
View Article and Find Full Text PDFClustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling.
View Article and Find Full Text PDF