Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1.
View Article and Find Full Text PDFCertain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data.
View Article and Find Full Text PDFTo survive chemotherapy, lymphoma cells can relocate to protective niches where they receive support from the non-malignant cells. The biolipid 2-arachidonoylglycerol (2-AG), an agonist for the cannabinoid receptors CB1 and CB2, is released by stromal cells in the bone marrow. To investigate the role of 2-AG in lymphoma, we analyzed the chemotactic response of primary B-cell lymphoma cells enriched from peripheral blood of twenty-two chronic lymphocytic leukemia (CLL) and five mantle cell lymphoma (MCL) patients towards 2-AG alone and/or to the chemokine CXCL12.
View Article and Find Full Text PDFEZH2 is overexpressed in poor-prognostic chronic lymphocytic leukaemia (CLL) cases, acting as an oncogene; however, thus far, the EZH2 target genes in CLL have not been disclosed. In this study, using ChIP-sequencing, we identified EZH2 and H3K27me3 target genes in two prognostic subgroups of CLL with distinct prognosis and outcome, i.e.
View Article and Find Full Text PDFThe Ten-eleven-translocation 1 (TET1) protein is a member of dioxygenase protein family that catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. TET1 is differentially expressed in many cancers, including leukemia. However, very little is known about mechanism behind TET1 deregulation.
View Article and Find Full Text PDF