Publications by authors named "Mohammad Hafizuddin Hj Jumali"

The improvement of optical and optoelectronic properties of the individual poly [2-methoxy-5- (2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene]-End capped with Dimethyl phenyl (OC1C10-PPV-DMP), and poly (9,9'-di- n -octylfluorenyl-2,7-diyl) (F8) was revealed by blending them in ternary hybrid with optimal ratio (F8/2 wt.% MEH-PPV/2 wt.% OC1C10-PPV-DMP).

View Article and Find Full Text PDF

Tuning the emission spectrum of both binary hybrids of poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO) with each poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene] end-capped with Dimethyl phenyl (MDMO-PPV-DMP) by a systematic doping strategy was achieved. Both binary hybrid thin films of PFO/MEH-PPV and PFO/MDMO-PPV-DMP with various weight ratios were prepared via solution blending method prior to spin coating onto the glass substrates. The conjugation length of the PFO was tuned upon addition of acceptors (MEH-PPV or MDMO-PPV-DMP), as proved from shifting the emission and absorption peaks of the binary hybrids toward the acceptor in addition to enhancing the acceptor emission and reducing the absorbance of the PFO.

View Article and Find Full Text PDF

A new 2D titanium carbide (TiC), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of TiC multilayers when it is incorporated in the piezoelectric polymer host. The 0.

View Article and Find Full Text PDF

The influence of SiO/TiO nanocomposites (STNCs) content on non-radiative energy transfer (Förster-type) from poly (9,9'-dioctylfluorene-2,7-diyl) (PFO) to poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) using steady-state and time-resolved photoluminescence spectroscopies was investigated at room temperature. The improved energy transfer from PFO to MEH-PPV upon an increment of the STNCs was achieved by examining absorbance, emission (PL) and photoluminescence excitation (PLE) spectra. The shorter values of the quantum yield (φ) and lifetime (τ) of the PFO in the hybrid thin films compared with the pure PFO, indicating efficient energy transfer from PFO to MEH-PPV with the increment of STNCs in the hybrid.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how titanium dioxide (TiO) nanoparticles impact the light-emitting qualities of a specific ternary blend of three conjugated polymers, which include poly(9,9-dioctylfluorene-2,7-diyl) (PFO).
  • The researchers used a solution-blending technique and spin-coating to prepare thin films, achieving a strong white light emission through Förster Resonance Energy Transfer (FRET) in a specific blend ratio.
  • Adding up to 10 weight percent of TiO nanoparticles significantly enhanced the white light emission, but higher concentrations caused a decrease in brightness due to clumping of the nanoparticles, while also affecting the electrical characteristics of the films.
View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells (i.e., amorphous Si, GaAs, and CdTe).

View Article and Find Full Text PDF