Publications by authors named "Mohammad H Rahimian"

The evaporation of the liquid droplet on a structured surface is numerically investigated using the lattice Boltzmann method. Simulations are carried out for different contact angles and pillar widths. From the simulation for the Cassie state, it is found that the evaporation starts in a pinned contact line mode.

View Article and Find Full Text PDF

In this work, numerical simulations are performed to study the droplet response to the vertical vibration of the substrate, under various frequencies and amplitudes using the multiphase lattice Boltzmann method. First, the numerical results are validated against published experimental data. The effects of droplet size, surface wettability, amplitude, and frequency of the vibrating substrate on droplet detachment are studied.

View Article and Find Full Text PDF

The vibration-induced droplet shedding mechanism on microstructured superhydrophobic surfaces was simulated using the lattice Boltzmann method. The numerical simulations of natural droplet oscillations for various surface structures show that the natural frequency of the droplet is strongly dependent on surface morphology. The results show good agreement with basic theoretical values.

View Article and Find Full Text PDF

Coalescing water droplets on superhydrophobic surfaces can detach from the surface without the aid of any external forces. This self-propelled droplet detachment mechanism is useful in many applications, such as phase change heat transfer enhancement, self-cleaning surfaces, and anti-icing and antidew coatings. In this article, the coalescence-induced droplet jumping in a three-phase system is numerically investigated.

View Article and Find Full Text PDF

In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses current limitations in lattice Boltzmann (LB) models for combustion, which mainly focus on single-phase or two-phase flow with constant densities.
  • The authors propose a new two-phase LB method that incorporates variable density for gas phases, and models phase change and combustion by using a free-energy approach and a new source term in the continuity equation.
  • Validation of the model with n-heptane and n-butanol droplets shows good agreement with existing numerical and experimental results, indicating its potential for effectively simulating spray combustion.
View Article and Find Full Text PDF

In the present article, we extend and generalize our previous article [H. Safari, M. H.

View Article and Find Full Text PDF

In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation.

View Article and Find Full Text PDF

In this paper, at first, a lattice Boltzmann method for binary fluids, which is applicable at low viscosity values, is developed. The presented scheme is extension of the free-energy-based approach to a multi-relaxation-time collision model. Various benchmark problems such as the well-known Laplace law for stationary bubbles and capillary-wave test are conducted for validation.

View Article and Find Full Text PDF