Publications by authors named "Mohammad Dadashipour"

Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis.

View Article and Find Full Text PDF

We showed previously that the Y97N mutant of the ST0452 protein, isolated from , exhibited over 4 times higher -acetylglucosamine-1-phosphate (GlcNAc-1-P) uridyltransferase (UTase) activity, compared with that of the wild-type ST0452 protein. We determined the three-dimensional structure of the Y97N protein to explore the detailed mechanism underlying this increased activity. The overall structure was almost identical to that of the wild-type ST0452 protein (PDB ID 2GGO), with residue 97 (Asn) interacting with the O-5 atom of -acetylglucosamine (GlcNAc) in the complex without metal ions.

View Article and Find Full Text PDF

Most organisms, from to , synthesize UDP--acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP--acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In , the bacterial-type UDP-GlcNAc biosynthetic pathway was reported for However, the complete biosynthetic pathways for UDP-GlcNAc and UDP-GalNAc present in one archaeal species are unidentified. Previous experimental analyses on enzymatic activities of the ST0452 protein, identified from the thermophilic crenarchaeon , predicted the presence of both a bacterial-type UDP-GlcNAc and an independent UDP-GalNAc biosynthetic pathway in this archaeon.

View Article and Find Full Text PDF

Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility.

View Article and Find Full Text PDF

Unlabelled: The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant.

View Article and Find Full Text PDF

Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years.

View Article and Find Full Text PDF

Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria.

View Article and Find Full Text PDF

Hydroxynitrile lyases (HNLs) catalyze degradation of cyanohydrins to hydrogen cyanide and the corresponding ketone or aldehyde. HNLs can also catalyze the reverse reaction, i.e.

View Article and Find Full Text PDF

Low protein solubility of recombinantly expressed proteins in Escherichia coli is a major factor hindering their application and analysis. We generated highly in vivo soluble mutants of a hydroxynitrile lyase in E.coli using protein engineering.

View Article and Find Full Text PDF

A novel S-hydroxynitrile lyase (HNL) was purified from leaves of a plant, Baliospermum montanum, by ammonium sulfate fractionation and column chromatographies. Full-length cDNA and genomic DNA were cloned and sequenced. The latter contained two introns and one ORF encoding a 263-residue protein (subunit: 29.

View Article and Find Full Text PDF

Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution.

View Article and Find Full Text PDF