Publications by authors named "Mohammad Bagher Naghibi-Sistani"

Background: This paper proposes a new emotional stress assessment system using multi-modal bio-signals. Electroencephalogram (EEG) is the reflection of brain activity and is widely used in clinical diagnosis and biomedical research.

Methods: We design an efficient acquisition protocol to acquire the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) and peripheral signals such as blood volume pulse, skin conductance (SC) and respiration, under images induction (calm-neutral and negatively excited) for the participants.

View Article and Find Full Text PDF

In this paper, an output-feedback solution to the infinite-horizon linear quadratic tracking (LQT) problem for unknown discrete-time systems is proposed. An augmented system composed of the system dynamics and the reference trajectory dynamics is constructed. The state of the augmented system is constructed from a limited number of measurements of the past input, output, and reference trajectory in the history of the augmented system.

View Article and Find Full Text PDF

This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs.

View Article and Find Full Text PDF

Objective(s): A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions which are used in this paper to predict binding energy. We proposed a structure that obtains binding energy using physicochemical molecular descriptions of the selected drugs.

View Article and Find Full Text PDF

This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation.

View Article and Find Full Text PDF