An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThis study presents the frequency analysis of a size-dependent laminated polymer composite microtube using a nonlocal strain-stress gradient (NSG) model. By applying energy methods (known as Hamilton's principle), the motion equations of the laminated micro tube composites are developed. The thermodynamic equations of the laminated microtube are based on first-order shear deformation theory (FSDT), and a generalized differential quadrature method (GDQM) is employed to find the model for the natural frequencies.
View Article and Find Full Text PDF