Monolayer jacutingaite (PtHgSe) exhibits remarkable properties, including significant spin-orbit coupling (SOC) and a tunable band gap, attributed to its buckled honeycomb geometry and the presence of heavy atoms. In this study, we explore the spin- and valley-dependent anomalous Nernst effect (ANE) in jacutingaite under the influence of a vertical electric field, off-resonance circularly polarized light (OCPL), and an antiferromagnetic exchange field. Our findings, within the low-energy approximation, reveal the emergence of a perfectly spin-polarized ANE with the application of appropriate OCPL and a perfectly valley-polarized ANE under an antiferromagnetic exchange field.
View Article and Find Full Text PDFThe anomalous Nernst coefficient (ANC) for transition-metal dichalcogenide (TMD) bilayers is studied with a focus on the interplay between layer pseudospin, spin, and valley degrees of freedom when electric and exchange fields are present. Breaking the inversion and time reversal symmetries via respectively electric and exchange fields results for bilayer TMDs in a spin-valley-layer polarized total ANC. Conditions are determined for controlling the spin, valley, and layer-resolved contributions via electric field tuning.
View Article and Find Full Text PDF