Publications by authors named "Mohammad AlBataineh"

Mucin 1 (or MUC1) is a heterodimeric transmembrane glycoprotein expressed on the apical surface of polarized epithelial cells in several tissues including the kidney. Recent studies have revealed several novel roles of MUC1 in the kidney, potentially including bacterial infection, mineral balance, and genetic interstitial kidney disease, even though MUC1 levels are reduced not only in the kidney but also in all tissues due to MUC1 mutations. A careful localization of MUC1 in discrete segments of the nephron is the first step in understanding the multiple functional roles of MUC1 in the kidney.

View Article and Find Full Text PDF

Key Points: Bile acids activate the epithelial Na channel (ENaC), which may lead to subsequent fluid retention in liver disease. Bile duct ligation with spironolactone increased ENaC-dependent Na and fluid retention without hormone-linked increased ENaC abundance. Counteracting bile acid ENaC activation may be effective for treating fluid retention in liver disease.

View Article and Find Full Text PDF
Article Synopsis
  • IBD is a complex gastrointestinal disease that is becoming more common and is influenced by mitochondria and gut microbiota.
  • Evidence suggests that understanding the interaction between these elements may reveal new pathways important for IBD and could lead to innovative treatments.
  • The review evaluates experimental and clinical findings about how mitochondria and gut microbes communicate and their roles in the metabolism of intestinal cells and immune cells, proposing potential therapeutic strategies for managing IBD.
View Article and Find Full Text PDF

Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system (RAAS). Aldosterone dives Na retention by activating the mineralocorticoid receptor and promoting the maturation and apical surface expression of the epithelial Na channel (ENaC), found in the aldosterone-sensitive distal nephron. However, evidence of fluid retention without RAAS activation suggests the involvement of additional mechanisms.

View Article and Find Full Text PDF

Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca-selective channel, TRPV5, in cultured unpolarized cells.

View Article and Find Full Text PDF

Background: Patients with severe coronavirus disease 2019 (COVID-19) are at an increased risk of acute respiratory distress syndrome and mortality. This is due to the increased levels of pro-inflammatory cytokines that amplify downstream pathways that are controlled by immune regulators. Objective: This study aimed to investigate the association between cytokine genetic variants, cytokine serum levels/profiles, and disease severity in critically and noncritically ill COVID-19 patients.

View Article and Find Full Text PDF

Background: Partial arhinia is an extremely rare congenital malformation with an unclear pathogenesis. In this condition, the external nasal structures and nasal passages are absent, and it can be associated with somatic anomalies, other craniofacial abnormalities, severe feeding, and airway compromise.

Objective: In this article, we describe a case of a baby born with congenital partial arhinia at Prince Rashid AlHasan Hospital in Irbid, Jordan.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury.

View Article and Find Full Text PDF

Despite the maintenance of YopP/J alleles throughout the human-pathogenic lineage, the benefit of YopP/J-induced phagocyte death for pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined.

View Article and Find Full Text PDF

Large-conductance K (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity.

View Article and Find Full Text PDF

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI).

View Article and Find Full Text PDF

The proper function of the organs that make up the urinary tract (kidneys, ureters, bladder, and urethra) depends on their ability to sense and respond to mechanical forces, including shear stress and wall tension. However, we have limited understanding of the mechanosensors that function in these organs and the tissue sites in which these molecules are expressed. Possible candidates include stretch-activated PIEZO channels (PIEZO1 and PIEZO2), which have been implicated in mechanically regulated body functions including touch sensation, proprioception, lung inflation, and blood pressure regulation.

View Article and Find Full Text PDF

Background: The epidemiology of extended-spectrum β-lactamase (ESBL)-producing bacteria is fast evolving with increasing global trend towards community-acquired infections. Limited information available about ESBLs therapy outcomes and control strategies, especially in the Middle Eastern countries.

Methods: We studied 399 ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates from urinary tract infections (UTIs) occurred between 2014 and 2016 in University Hospital Sharjah.

View Article and Find Full Text PDF

Purpose Of Review: Recent studies in the kidney have revealed that the well characterized tumor antigen mucin 1 (MUC1/Muc1) also has numerous functions in the normal and injured kidney.

Recent Findings: Mucin 1 is a transmembrane mucin with a robust glycan-dependent apical targeting signal and efficient recycling from endosomes. It was recently reported that the TRPV5 calcium channel is stabilized on the cell surface by galectin-dependent cross-linking to mucin 1, providing a novel mechanism for regulation of ion channels and normal electrolyte balance.

View Article and Find Full Text PDF

Aquaporin-2 (AQP2) is essential to maintain body water homeostasis. AQP2 traffics from intracellular vesicles to the apical membrane of kidney collecting duct principal cells in response to vasopressin [arginine vasopressin (AVP)], a hormone released with low intravascular volume, which causes decreased kidney perfusion. Decreased kidney perfusion activates AMP-activated kinase (AMPK), a metabolic sensor that inhibits the activity of several transport proteins.

View Article and Find Full Text PDF

Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM.

View Article and Find Full Text PDF

Significant interlaboratory variability is observed in testing the caspofungin susceptibility of Candida species by both the CLSI and EUCAST broth microdilution methodologies. We evaluated the influence of treated versus untreated polystyrene microtiter trays on caspofungin MICs using 209 isolates of four Candida species, including 16 C. albicans and 11 C.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF)-1 and β-catenin protective pathways represent the two most significant cellular responses that are activated in response to acute kidney injury. We previously reported that murine mucin (Muc)1 protects kidney function and morphology in a mouse model of ischemia-reperfusion injury (IRI) by stabilizing HIF-1α, enhancing HIF-1 downstream signaling, and thereby preventing metabolic stress (Pastor-Soler et al. Muc1 is protective during kidney ischemia-reperfusion injury.

View Article and Find Full Text PDF

Despite the availability of new diagnostic assays and broad-spectrum antifungal agents, invasive fungal infections remain a significant challenge to clinicians and are associated with marked morbidity and mortality. In addition, the number of etiologic agents of invasive mycoses has increased accompanied by an expansion in the immunocompromised patient populations, and the use of molecular tools for fungal identification and characterization has resulted in the discovery of several cryptic species. This article reviews various methods used to identify fungi and perform antifungal susceptibility testing in the clinical laboratory.

View Article and Find Full Text PDF

Over the past 20 years, considerable advances have been made toward our understanding of how post-translational modifications affect a wide variety of biological processes, including morphology and virulence, in medically important fungi. Phosphorylation stands out as a key molecular switch and regulatory modification that plays a critical role in controlling these processes. In this article, we first provide a comprehensive and up-to-date overview of the regulatory roles that both Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.

View Article and Find Full Text PDF
Article Synopsis
  • Azole resistance in the fungus Aspergillus fumigatus is becoming more common worldwide, affecting patients even without prior exposure to the medication.
  • Specific mutations (TR34 L98H and TR46 Y121F T289A) linked to this resistance have been seen across various continents, including Europe, Asia, and Australia.
  • Recent findings confirm the presence of these mutations in A. fumigatus samples collected from institutions in the United States, alongside information about other resistance-related mutations and azole MIC levels.
View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI.

View Article and Find Full Text PDF

Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species.

View Article and Find Full Text PDF

Candida albicans, a major human fungal pathogen, is the primary cause of invasive candidiasis in a wide array of immunocompromised patients. C. albicans virulence requires the ability to undergo a reversible morphological transition from yeast to filaments in response to a variety of host environmental cues.

View Article and Find Full Text PDF

The PTH receptor is to our knowledge one of the first G protein-coupled receptor (GPCR) found to sustain cAMP signaling after internalization of the ligand-receptor complex in endosomes. This unexpected model is adding a new dimension on how we think about GPCR signaling, but its mechanism is incompletely understood. We report here that endosomal acidification mediated by the PKA action on the v-ATPase provides a negative feedback mechanism by which endosomal receptor signaling is turned off.

View Article and Find Full Text PDF