Publications by authors named "Mohammad Al-Owain"

Purpose: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family.

View Article and Find Full Text PDF

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.

View Article and Find Full Text PDF

Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic.

View Article and Find Full Text PDF

MEDNIK syndrome (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma) is an autosomal-recessive disorder caused by bi-allelic mutations in AP1S1, encoding the small σ subunit of the AP-1 complex. Central to the pathogenesis of MEDNIK syndrome is abnormal AP-1-mediated trafficking of copper transporters; this abnormal trafficking results in a hybrid phenotype combining the copper-deficiency-related characteristics of Menkes disease and the copper-toxicity-related characteristics of Wilson disease. We describe three individuals from two unrelated families in whom a MEDNIK-like phenotype segregates with two homozygous null variants in AP1B1, encoding the large β subunit of the AP-1 complex.

View Article and Find Full Text PDF

The wobble hypothesis was proposed to explain the presence of fewer tRNAs than possible codons. The wobble nucleoside position in the anticodon stem-loop undergoes a number of modifications that help maintain the efficiency and fidelity of translation. AlkB homolog 8 (ALKBH8) is an atypical member of the highly conserved AlkB family of dioxygenases and is involved in the formation of mcm5s2U, (S)-mchm5U, (R)-mchm5U, mcm5U, and mcm5Um at the anticodon wobble uridines of specific tRNAs.

View Article and Find Full Text PDF

Maple syrup urine disease (MSUD), an autosomal recessive inborn error of metabolism due to defects in the branched-chain α-ketoacid dehydrogenase (BCKD) complex, is commonly observed among other inherited metabolic disorders in the kingdom of Saudi Arabia. This report presents the results of mutation analysis of three of the four genes encoding the BCKD complex in 52 biochemically diagnosed MSUD patients originating from Saudi Arabia. The 25 mutations (20 novel) detected spanned across the entire coding regions of the , and genes.

View Article and Find Full Text PDF

Hereditary sensory autonomic neuropathy type IV (HSAN-IV) is a rare autosomal recessive disorder that usually begins in infancy and is characterized by anhidrosis, insensitivity to noxious stimuli leading to self-mutilating behavior, and intellectual disability. HSAN-IV is caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene, NTRK1, encoding the high-affinity receptor of nerve growth factor (NGF) which maps to chromosome 1q21-q22. Patients with HSAN-IV lack all NGF-dependent neurons, the primary afferents and sympathetic postganglionic neurons leading to lack of pain sensation and the presence of anhidrosis, respectively.

View Article and Find Full Text PDF

Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family.

View Article and Find Full Text PDF

Objective: Genomic duplications that lead to autism and other human diseases are interesting pathological lesions since the underlying mechanism almost certainly involves dosage sensitive genes. We aim to understand a novel genomic disorder with profound phenotypic consequences, most notably global developmental delay, autism, psychosis, and anorexia nervosa.

Methods: We evaluated the affected individuals, all maternally related, using childhood autism rating scale (CARS) and Vineland Adaptive scales, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) brain, electroencephalography (EEG), electromyography (EMG), muscle biopsy, high-resolution molecular karyotype arrays, Giemsa banding (G-banding) and fluorescent in situ hybridization (FISH) experiments, mitochondrial DNA (mtDNA) sequencing, X-chromosome inactivation study, global gene expression analysis on Epstein-Barr virus (EBV)-transformed lymphoblasts, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

The GM2 gangliosidose, Tay-Sachs and Sandhoff diseases, are a class of lysosomal storage diseases in which relentless neurodegeneration results in devastating neurological disability and premature death. Primary prevention is the most effective intervention since no effective therapy is currently available. An extremely successful model for the prevention of GM2 gangliosidosis in the Ashkenazi Jewish community is largely attributable to the very limited number of founder mutations in that population.

View Article and Find Full Text PDF

Background: Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is an extremely rare autosomal recessive disorder. In addition to the juxtacentromeric heterochromatic instability, the disease is characterized by variable reduction in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood as well as exhibit facial dysmorphism including hypertelorism, epicanthal folds, and low-set ears.

Subjects And Methods: A case series of five patients with ICF from a major immunodeficiency center in Saudi Arabia were included.

View Article and Find Full Text PDF

Purpose: Canavan disease, caused by a deficiency of aspartoacylase, is one of the most common cerebral degenerative diseases of infancy. The aims of this study were to identify the mutations associated with Canavan disease in Saudi Arabia and to identify differentially expressed genes likely to contribute to the development of this disease.

Methods: Polymerase chain reaction, long polymerase chain reaction, multiplex ligation-dependent probe amplification, sequencing, array comparative genomic hybridization (aCGH), and global gene expression profiling were used to determine putative mutations and likely gene signatures in cultured fibroblasts of patients from Saudi Arabia.

View Article and Find Full Text PDF

Propionic acidemia is a metabolic disorder (OMIM 606054) caused by deficiency of the propionyl-coenzyme A (CoA) carboxylase, which subsequently results in accumulation of propionic acid. Patients may initially present with poor feeding, vomiting, loss of appetite, hypotonia, and lethargy. Later, most children will show different degrees of motor, social and language delay even more serious medical problems, including heart abnormalities, seizures, coma, and possibly death.

View Article and Find Full Text PDF

A 2-year-old male patient with dysmorphic facial features and multiple congenital anomalies suggestive of a chromosome syndrome is presented. The facial features consisted of a large and high forehead, mild metopic ridging, a small triangular face, depressed nasal bridge, microphthalmia (right more than the left), protruding ears, and mildly prominent anteverted nose with long and smooth philtrum. Cytogenetic analysis showed 46,XY,del(20)(q11.

View Article and Find Full Text PDF