Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater.
View Article and Find Full Text PDFDuring membrane filtration, it is inevitable that a membrane will experience physical damage, leading to a loss of its integrity and a decrease in separation efficiency. Hence, the development of a water-responsive membrane capable of healing itself autonomously after physical damage is significantly important in the field of water filtration. Herein, a water-enabled self-healing composite polyethersulfone (PES) membrane was synthesized by coating the membrane surface using a mixed solution composed of poly (vinyl alcohol) and polyacrylic acid (PVA-PAA).
View Article and Find Full Text PDFElectrogenic microorganisms serve as important biocatalysts for microbial electrochemical sensors (MESes). The electrical signal produced is based on the rate of electron transfer between the microbes and electrodes, which represents the biotoxicity of water. However, existing MESes require complex and sophisticated fabrication methods.
View Article and Find Full Text PDFThe potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered.
View Article and Find Full Text PDFReverse osmosis (RO) membrane-based desalination system with various configurations has emerged as a critical option for reclaiming brackish water. This study aims to evaluate the environmental performance of the combination of photovoltaic-reverse osmosis (PVRO) membrane treatment system via life cycle assessment (LCA). The LCA was calculated using SimaPro v9 software with ReCiPe 2016 methodology and EcoInvent 3.
View Article and Find Full Text PDFDecorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined.
View Article and Find Full Text PDFOily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane.
View Article and Find Full Text PDFFreshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses.
View Article and Find Full Text PDFA life cycle assessment of anaerobic-treated palm oil mill effluent (POME) was conducted to assess the environmental performance on two integrated treatment processes: the typical hollow fiber membrane ultrafiltration module coupled with adsorption and electro-oxidation as pretreatment. The analysis was undertaken using the ReCiPe 2016 method and SimaPro v9 software was employed using a 'cradle-to-gate' approach. The results showed that hollow fiber membrane from the adsorption integrated membrane impacted significantly at 42% to 99% across all impact categories for both processes.
View Article and Find Full Text PDFThe toxicity of heavy metals can cause water pollution and has harmful effects on human health and the environment. Various methods are used to overcome this pressing issue and each method has its own advantages and disadvantages. Membrane filtration technology such as nanofiltration (NF) produces high quality water and has a very small footprint, which results in lower energy usage.
View Article and Find Full Text PDFBackground: An increased risk of cancer death has been demonstrated for patients diagnosed with acute coronary syndrome (ACS). We are investigating possible geographic risk disparities.
Methods: This prospective study included 541 ACS patients who were admitted to hospitals and discharged alive in three provinces of Italy's Veneto region.
In this study, hematite graphene oxide (αFeO-GO) powder nanocomposites and thin-film hematite graphene oxide (αFeO-GO) were synthesized for application in the removal of Rhodamine B (RhB) from textile wastewater. αFeO-GO nanomaterials were placed onto the FTO substrate to form a thin layer of nanocomposites. Different analysis including XRD, FTIR, Raman spectra, XPS, and FESEM were done to analyze the morphology, structure, and properties of the synthesized composites as well as the chemical interactions of αFeO with GO.
View Article and Find Full Text PDFFertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity.
View Article and Find Full Text PDFThe functionalized graphene oxide by silica and chitosan helped to prepared an adsorbent with high adsorption potential for removing cadmium(II). In this study, the adsorbent was synthesized and the batch system of adsorption method was examined to find the potential of the new adsorbent with the various factors of the concentration, pH, time and temperature. The characterization of adsorbent was analyzed by FT-IR, TEM, Zeta potential and XRD analysis.
View Article and Find Full Text PDFIn this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and HSO. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined.
View Article and Find Full Text PDFRapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems.
View Article and Find Full Text PDFIn the present work, palm kernel shell (PKS) biomass waste has been used as a low-cost and easily available precursor to prepare carbon dots (CDs) via microwave irradiation method. The impacts of the reacting medium: water and diethylene glycol (DEG), and irradiation period, as well as the presence of chitosan on the CDs properties, have been investigated. The synthesized CDs were characterized by several physical and optical analyses.
View Article and Find Full Text PDFGraphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions.
View Article and Find Full Text PDFHeavy metal ions have a toxic and negative influences on the environment and human health even at low concentrations and need to be removed from wastewater. Chitosan and graphene oxide are suitable nano plate adsorbents with high adsorption potential because of their π-π interaction, and they are available functional groups that interact with other elements. In this study, graphene oxide was coated with silica to enhance the hydrophilicity of the adsorbent.
View Article and Find Full Text PDFRapid development of nanotechnology has been in high demand, especially for silver nanoparticles (AgNPs) since they have been proven to be useful in various fields such as medicine, textiles, and household appliances. AgNPs are very important because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including wound care management. This review aimed to elucidate the underlying mechanisms of AgNPs that are responsible for their antiviral properties and their antibacterial activity towards the microorganisms.
View Article and Find Full Text PDFThis study produced a novel polysulfone (PSF) membrane for dye removal using lemon-derived carbon quantum dots-grafted silver nanoparticles (Ag/CQDs) as membrane nanofiller. The preparation of CQDs was completed by undergoing hydrothermal treatment to carbonize the pulp-free lemon juice into CQD solution. The CQD solution was then coupled with Ag nanoparticles to form Ag/CQDs nanohybrid.
View Article and Find Full Text PDFGas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability.
View Article and Find Full Text PDFStudy of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process.
View Article and Find Full Text PDFIn this study, Ag₂O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag₂O on the fabrics.
View Article and Find Full Text PDF