Background: To examine the blood flow and detection of the issues related to it by medical ultrasound, it is extremely important to have suitable blood mimicking fluid (BMF) to be used and to have a movable or portable Doppler flow phantom to use it as a standardizing tool. As known, the main drawbacks of the currently commercial BMF used in the research studies are high in cost and the long time needed for preparation, which is at least 5-7 h. Moreover, there are only two common scatter particles using in BMF as suspension materials such as nylon (Orgasol) and polystyrene.
View Article and Find Full Text PDFThe wall-less flow phantoms with recognized acoustic features (attenuation and speed of sound), interior properties, and dimensions of tissue were prepared, calibrated, and characterized of Doppler ultrasound scanning demands tissue-mimicking materials (TMMs). TMM phantoms are commercially available and ready-made for medical ultrasound applications. Furthermore, the commercial TMM phantoms are proper for ultrasound purpose or estimation of diagnostic imaging techniques according to the chemical materials used for its preparation.
View Article and Find Full Text PDFDoppler ultrasound imaging system description and calibration need blood-mimicking fluids (BMFs) for the test target of medical ultrasound diagnostic tools, with known interior features and acoustic and physical properties of this fluid (BMF). Physical and acoustical properties determined in the International Electrotechnical Commission (IEC) standard are specified as constant values, the materials used in the BMF preparation should have values similar to the IEC standard values. However, BMF is ready-made commercially from a field of medical usage, which may not be appropriate in the layout of ultrasound system or for an estimate of novel imaging mechanism.
View Article and Find Full Text PDFMedical Doppler ultrasound is usually utilized in the clinical adjusting to evaluate and estimate blood flow in both the major (large) and the minor (tiny) vessels of the body. The normal and abnormal sign waveforms can be shown by spectral Doppler technique. The sign waveform is individual to each vessel.
View Article and Find Full Text PDF