Publications by authors named "Mohammad A Kaisar"

Sulforaphane (SFN) has been shown to protect the brain vascular system and effectively reduce ischemic injuries and cognitive deficits. Given the robust cerebrovascular protection afforded by SFN, the objective of this study was to profile these effects in vitro using primary mouse brain microvascular endothelial cells and focusing on cellular redox, metabolism and detoxification functions. We used a mouse MitoChip array developed and validated at the FDA National Center for Toxicological Research (NCTR) to profile a host of genes encoded by nuclear and mt-DNA following SFN treatment (0-5 µM).

View Article and Find Full Text PDF

Previous studies in our laboratory have shown that nicotine exposure decreases glucose transport across the blood-brain barrier in ischemia-reperfusion conditions. We hypothesize that nicotine can also dysregulate brain parenchymal glucose utilization by altering glucose transporters with effects on sensitivity to ischemic stroke. In this study, we investigated the effects of nicotine exposure on neuronal glucose utilization using an in vitro ischemic stroke model.

View Article and Find Full Text PDF

It is well established that tobacco smoking is associated with vascular endothelial dysfunction in a causative and dose dependent manner primarily related to the tobacco smoke (TS) content of reactive oxygen species (ROS), nicotine, and oxidative stress (OS) -driven inflammation. Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes (e-Cigs) can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Likewise, chronic e-Cig vaping could be prodromal to vascular endothelial dysfunctions.

View Article and Find Full Text PDF

Background: A sensitive, rapid and selective UHPLC-MS/MS method has been developed and validated for the quantification of Nicotine (NT) and Cotinine (CN) using Continine-d as internal standard (IS) as per FDA guidelines. Sample preparation involved simple protein precipitation of 20 µL mouse plasma or brain homogenate using acetonitrile at 1:8 ratio. Mass Spectrometer was operated in positive polarity under the multiple reaction-monitoring mode using electro spray ionization technique and the transitions of m/z 163.

View Article and Find Full Text PDF

Background: Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently accountable for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current proportion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from a smoking-related illness.

View Article and Find Full Text PDF

Recently published in vitro and in vivo findings strongly suggest that BBB impairment and increased risk for stroke by tobacco smoke (TS) closely resemble that of type-2 diabetes (2DM) and develop largely in response to common key modulators such oxidative stress (OS), inflammation and alterations of the endogenous antioxidative response system (ARE) regulated by the nuclear factor erythroid 2-related factor (Nrf2). Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes) can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Herein we provide evidence that likewise to TS, chronic e-Cigarette (e-Cig) vaping can be prodromal to the loss of blood-brain barrier (BBB) integrity and vascular inflammation as well as act as a promoting factor for the onset of stroke and worsening of post-ischemic brain injury.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) damage is a critical neurovascular complication of diabetes mellitus that adversely affects the CNS health and function. Previously, we showed the protective role of NF-E2 related factor-2 (Nrf2), a redox sensitive transcription factor, in regulation of BBB integrity. Given the pathogenic role of mitochondrial oxidative stress in diabetes-related microvascular complications, we focused on assessing: 1) the impact of diabetes on brain Nrf2 in correlation with BBB permeability and 2) Nrf2-dependent regulation of the mitochondrial transporter ABCB10, an essential player in mitochondrial function and redox balance at BBB endothelium.

View Article and Find Full Text PDF

Cigarette smoking (CS) is associated with vascular endothelial dysfunction in a causative way primarily related to the TS content of reactive oxygen species (ROS), nicotine, and inflammation. TS promotes glucose intolerance and increases the risk of developing type-2 diabetes mellitus (2DM) with which it shares other pathogenic traits including the high risk of cerebrovascular and neurological disorders like stroke via ROS generation, inflammation, and blood-brain barrier (BBB) impairment. Herein we provide evidence of the role played by nuclear factor erythroid 2-related factor (Nrf2) in CS-induced cerebrobvascular/BBB impairments and how these cerebrovascular harmful effects can be circumvented by the use of metformin (MF; a widely prescribed, firstline anti-diabetic drug) treatment.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases.

View Article and Find Full Text PDF

It is well known that tobacco consumption is a leading cause of preventable deaths worldwide and has been linked to major diseases ranging from cancer to chronic obstructive pulmonary disease, atherosclerosis, stroke and a host of neurological/neurodegenerative disorders. In the past decade a number of alternative vaping products have hit the market, rapidly gaining consumers especially among the younger population. Electronic nicotine delivery systems or e-cigarettes have become the sought-after product due to the belief that they are much safer than traditional cigarettes.

View Article and Find Full Text PDF

In this study, we sought to investigate how concomitant hyperglycemia influences the impact of combination antiretroviral therapy on blood-brain barrier (BBB) endothelial function. Immortalized human brain microvascular endothelial cell line (hCMEC/D3) was exposed to azidothymidine (AZT; a nucleoside reverse transcriptase inhibitor) and/or indinavir (IND; protease inhibitor) in normal glycemic (5.5mM) or hyperglycemic (HG; 25mM) media containing D-glucose for 24-72h.

View Article and Find Full Text PDF

Blood Brain Barrier (BBB) exposed to realistic concentrations (comparable to a chronic heavy smoker) of Cigarette Smoke Extract (CSE) triggers a strong endothelial inflammatory response which can lead to the onset of neurological disorders. The involvement of Reactive Oxygen Species (ROS) in this inflammatory cascade is evident from the up-regulation of nuclear factor erythroid 2 related factor 2 (Nrf-2), a transcription factor involved in anti-oxidant response signaling in CSE exposed endothelial cells. We have shown that pre-treatment with α-tocopherol and/or ascorbic acid is highly protective for the BBB, thus suggesting that, prophylactic administration of antioxidants can reduce CSE and/or inflammatory-dependent BBB damage.

View Article and Find Full Text PDF

Background: Diabetes and tobacco smoking are significant public health concerns which have been shown to independently impact the blood-brain barrier (BBB). Since smoking is a risk factor for diabetes and shares some of the common pathological pathways leading to metabolic abnormalities, it is hypothesized that their combination would produce additive or synergistic BBB dysfunction. Therefore, the objective of this study was to assess this hypothesis and evaluate the magnitude of these effects in vitro using hCMEC/D3 cells; a well-established human BBB endothelial cell line.

View Article and Find Full Text PDF

In this study, five compounds, lupeol (1), epilupeol (2), β-sitosterol (3), stigmasterol (4) and p-methoxybenzaldehyde (5) were isolated from the petroleum ether and dichloromethane fractions of a methanolic extract of the stem bark of Delonix regia. Antimicrobial screening of the different extracts (15 μg mm-2) was conducted by the disc diffusion method. The zones of inhibition demonstrated by the petroleum ether, carbon tetrachloride and dichloromethane fractions ranged from 9-14 mm, 11-13 mm and 9-20 mm, respectively, compared to kanamycin standard with the zone of inhibition of 20-25 mm.

View Article and Find Full Text PDF