Lithium niobate, because of its nonlinear and electro-optical properties, is one of the materials of choice for photonic applications. The development of nanostructuring capabilities of thin film lithium niobate (TFLN) permits fabrication of small footprint, low-loss optical circuits. With the recent implementation of on-chip single-photon detectors, this architecture is among the most promising for realizing on-chip quantum optics experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2018
Photoinduced enhanced Raman spectroscopy from a lithium niobate on insulator (LNOI)-silver nanoparticle template is demonstrated both by irradiating the template with 254 nm ultraviolet (UV) light before adding an analyte and before placing the substrate in the Raman system (substrate irradiation) and by irradiating the sample in the Raman system after adding the molecule (sample irradiation). The photoinduced enhancement enables up to an ∼sevenfold increase of the surface-enhanced Raman scattering signal strength of an analyte following substrate irradiation, whereas an ∼threefold enhancement above the surface-enhanced signal is obtained for sample irradiation. The photoinduced enhancement relaxes over the course of ∼10 h for a substrate irradiation duration of 150 min before returning to initial signal levels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Polarization switching in ferroelectric materials underpins a multitude of applications ranging from nonvolatile memories to data storage to ferroelectric lithography. While traditionally considered to be a functionality of the material only, basic theoretical considerations suggest that switching is expected to be intrinsically linked to changes in the electrochemical state of the surface. Hence, the properties and dynamics of the screening charges can affect or control the switching dynamics.
View Article and Find Full Text PDFWe investigate polarization-insensitive waveguide designs afforded by the interplay of material and waveguide birefringence in LiNbO-on-insulator photonic wires. Fundamental mode birefringence-free operation in the 0.8-1.
View Article and Find Full Text PDFElectronically tunable optical true-time delay lines are proposed. The devices utilize the combination of apodised gratings and the free-carrier plasma effect to tune the enhanced delay of silicon waveguides at a fixed wavelength. Three variations of the proposed scheme are studied and compared.
View Article and Find Full Text PDF