Movement-related gating ensures that decreased somatosensory information from external stimulation reaches the cortex during movement when compared to resting levels; however, gating may be influenced by task-relevant manipulations, such that increased sensory information ascends to the cortex when information is relevant to goal-based actions. These task-relevancy effects are hypothesized to be controlled by a network involving the dorsolateral prefrontal cortex (DLPFC) based on this region's known role in selective attention, modulating the primary somatosensory cortex (S1). The purpose of the current study was first to verify task-relevancy influences on movement-related gating in the upper limb, and second to test the contribution of the DLPFC and the primary somatosensory cortex (S1) to these relevancy effects.
View Article and Find Full Text PDF