ACS Appl Bio Mater
September 2021
Background: Bone strength depends on multiple factors such as bone density, architecture and composition turnover. However, the role these factors play in osteoporotic fractures is not well understood.
Purpose: The aim of this study was to analyze trabecular bone architecture, and its crystal and organic composition in humans, by comparing samples taken from patients who had a hip fracture (HF) and individuals with hip osteoarthritis (HOA).
Objectives: To provide a comprehensive summary of the implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) on orthodontic treatment, contingency management, and provision of emergency orthodontic treatment, using currently available data and literature.
Materials And Methods: Orthodontically relevant sources of information were searched using electronic databases including PubMed and Google Scholar and current reports from major health bodies such as Centers for Disease Control and Prevention, World Health Organization, National Institutes of Health, and major national orthodontic associations.
Results: Where available, peer-reviewed and more recent publications were given priority.
J Biomed Mater Res B Appl Biomater
August 2020
Bone grafting procedures are commonly used to manage bone defects in the craniofacial region. Monetite is an excellent biomaterial option for bone grafting, however, it is limited by lack of osteoinduction. Several molecules can be incorporated within the monetite matrix to promote bone regeneration.
View Article and Find Full Text PDFBackground: Deproteinized bovine bone mineral (DBBM) has been extensively studied and used for bone regeneration in oral and maxillofacial surgery. However, it lacks an osteoinductive ability. We developed two novel bone anabolic conjugated drugs, known as C3 and C6, of an inactive bisphosphonate and a bone activating synthetic prostaglandin agonist.
View Article and Find Full Text PDFPurpose: A new type of diazonium-based adhesive has been recently developed by our team to bind dental alloys (Titanium, stainless steel, and cobalt chromium) to dental polymers. Here, we explored the endurance of the resulting adhesive after thermal-cycling and autoclave aging.
Materials And Methods: Polished samples of titanium (Ti), stainless steel (SS) and cobalt chromium (Co-Cr) were coated with a diazonium-based adhesive.
Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance.
View Article and Find Full Text PDFTherapies using human mesenchymal stem cells (MSCs) combined with three-dimensional (3D) printed scaffolds are a promising strategy for bone grafting. But the harvest of MSCs still remains invasive for patients. Human synovial fluid MSCs (hSF-MSCs), which can be obtained by a minimally invasive needle-aspiration procedure, have been used for cartilage repair.
View Article and Find Full Text PDFPurpose: The marginal fit is an essential component for the clinical success of prosthodontic restorations. The aim of this study was to investigate the influence of different abutment finish line widths and crown thicknesses on the marginal fit of zirconia crowns fabricated using either standard or fast sintering protocols.
Materials And Methods: Six titanium abutments were fabricated for receiving zirconia molar crowns.
Aim: Selective serotonin reuptake inhibitors (SSRIs) are one of the most common antidepressant drugs. SSRI use is associated with increased risk of bone fracture and titanium implant failure. The aim of this in vivo study was to investigate the effect of SSRIs on osseointegration and bone healing.
View Article and Find Full Text PDFUnlabelled: Titanium (Ti) dental implants are susceptible to bacterial infections and failure due to lack of proper epithelial seal. Epithelial cells establish a strong epithelial seal around natural teeth by the deposition of basal lamina (BL) proteins that adsorb on the tooth surface. This seal can even be re-established onto cementum or dentin following injury or periodontal therapy.
View Article and Find Full Text PDFPercutaneous and permucosal devices such as catheters, infusion pumps, orthopedic, and dental implants are commonly used in medical treatments. However, these useful devices breach the soft tissue barrier that protects the body from the outer environment, and thus increase bacterial infections resulting in morbidity and mortality. Such associated infections can be prevented if these devices are effectively integrated with the surrounding soft tissue, and thus creating a strong seal from the surrounding environment.
View Article and Find Full Text PDFObjective: Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin.
View Article and Find Full Text PDFObjective: Additive manufacturing offers a tailored approach to tissue engineering by providing anatomically precise scaffolds onto which stem cells and growth factors can be supplied. Polyetherketoneketone (PEKK), an ideal candidate biomaterial, is limited by a poor implant-bone interface but can be functionalized with adipose-derived stem cells (ADSC) to promote integration. This in vivo study examined the interaction of a three-dimensional printed PEKK/ADSC implant within the critical-sized mandibular defect in a rabbit model.
View Article and Find Full Text PDFActivated platelet concentrates are autologous blood preparations containing supraphysiological concentration of platelets. Platelet concentrates are commonly used for bone regeneration purposes based on the fact that growth factors released from activated platelets alpha granules have osteoinductive effects on bone cells. Although most preclinical and clinical studies show that platelet concentrates improve the outcomes of bone regeneration procedures, some studies reported conflicting results and even negative effects on bone healing.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2018
Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2018
Restoration of soft tissue defects remains a challenge for surgical reconstruction. In this study, we introduce a new approach to fabricate poly(d,l-lactic acid) (PDLLA) scaffolds with anatomical shapes customized to regenerate three-dimensional soft tissue defects. Highly concentrated polymer/salt mixtures were molded in flexible polyether molds.
View Article and Find Full Text PDFUnlabelled: Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions.
View Article and Find Full Text PDFMultipotent mesenchymal stromal cells (MSC) derived from both the bone marrow and adipose tissue possess the ability to differentiate into multiple cell lineages, regulate the immune function by secreting numerous bioactive paracrine factors, and hold great potential in cell therapy and tissue engineering. When combined with three-dimensional (3D) scaffolds, MSC can be used for bone defect reconstruction and engineering. This protocol describes the isolation of bone marrow mesenchymal stromal cells (BMMSC) and adipose-tissue derived stem cells (ADSC) from rabbits for subsequent seeding on tissue-engineered 3D-printed scaffolds and transplantation into a rabbit-model with the goal of repairing large osseous mandibular defects (one quarter of the lower jaw is removed surgically).
View Article and Find Full Text PDFBackground: Propranolol, a non-selective β-blocker widely used to treat cardiovascular conditions, favours bone accrual. Accordingly, we hypothesized that propranolol could be useful for improving bone healing and osseointegration. This in vivo study was designed to investigate the effect of propranolol on bone healing and osseointegration in rats' tibiae.
View Article and Find Full Text PDFBacterial contamination on titanium implants can cause inflammation and eventually implant failure. Currently used methods for decontamination of implants have demonstrated limited success. Metal surfaces can be disinfected electrochemically.
View Article and Find Full Text PDFHydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology.
View Article and Find Full Text PDFVertical bone augmentation procedures are frequently carried out to allow successful placement of dental implants in otherwise atrophic ridges and represent one of the most common bone grafting procedures currently performed. Onlay autografting is one of the most prevalent and predictable techniques to achieve this; however, there are several well documented complications and drawbacks associated with it and synthetic alternatives are being sought. Monetite is a bioresorbable dicalcium phosphate with osteoconductive and osteoinductive potential that has been previously investigated for onlay bone grafting and it is routinely made by autoclaving brushite to simultaneously sterilize and phase convert.
View Article and Find Full Text PDF