Publications by authors named "Mohamed Thahir"

Intelligent personal assistants (IPA) enable voice applications that facilitate people's daily tasks. However, due to the complexity and ambiguity of voice requests, some requests may not be handled properly by the standard natural language understanding (NLU) component. In such cases, a simple reply like "Sorry, I don't know" hurts the user's experience and limits the functionality of IPA.

View Article and Find Full Text PDF

Intelligent personal assistants (IPAs) such as Amazon Alexa, Google Assistant and Apple Siri extend their built-in capabilities by supporting voice apps developed by third-party developers. Sometimes the smart assistant is not able to successfully respond to user voice commands (aka utterances). There are many reasons including automatic speech recognition (ASR) error, natural language understanding (NLU) error, routing utterances to an irrelevant voice app, or simply that the user is asking for a capability that is not supported yet.

View Article and Find Full Text PDF

Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein-protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital heart disease (CHD) is the most common birth defect, affecting about 1% of live births, with a significantly higher incidence in fetuses, highlighting a strong genetic link.
  • A study involving 87,355 fetal mice identified 218 CHD models and discovered 91 recessive mutations across 61 genes, including many related to cilia and cell signaling, indicating that these pathways are crucial for understanding CHD development.
  • The findings suggest a complex interactome of proteins involved in CHD, providing new insights into its genetic underpinnings and creating valuable resources for further research into human heart diseases.
View Article and Find Full Text PDF

Background: Machine learning approaches for classification learn the pattern of the feature space of different classes, or learn a boundary that separates the feature space into different classes. The features of the data instances are usually available, and it is only the class-labels of the instances that are unavailable. For example, to classify text documents into different topic categories, the words in the documents are features and they are readily available, whereas the topic is what is predicted.

View Article and Find Full Text PDF

Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns.

View Article and Find Full Text PDF

Background: Biological processes in cells are carried out by means of protein-protein interactions. Determining whether a pair of proteins interacts by wet-lab experiments is resource-intensive; only about 38,000 interactions, out of a few hundred thousand expected interactions, are known today. Active machine learning can guide the selection of pairs of proteins for future experimental characterization in order to accelerate accurate prediction of the human protein interactome.

View Article and Find Full Text PDF