The goal of this research is to investigate the effects of Ohmic heating, heat generation, and viscous dissipative flow on magneto (MHD) boundary-layer heat transmission flowing of Jeffrey nanofluid across a stretchable surface using the Koo-Kleinstreuer-Li (KKL) model. Engine oil serves as the primary fluid and is suspended with copper oxide nanomolecules. The governing equations that regulate the flowing and heat transmission fields are partial-differential equations (PDEs) that are then converted to a model of non-linear ordinary differential equations (ODEs) via similarity transformation.
View Article and Find Full Text PDFThe present study proposes aerodynamically optimized exterior designs of a sport utility vehicle using computational fluid dynamics analysis based on steady-state Reynolds-averaged Navier-Stokes turbulence models. To achieve an optimal design, modifications of the outer shape and adding some aerodynamic devices are investigated. This study focuses on modifying this vehicle model's upper and front parts.
View Article and Find Full Text PDFSolar radiation, which is emitted by the sun, is required to properly operate photovoltaic cells and solar water pumps (SWP). A parabolic trough surface collector (PTSC) installation model was created to investigate the efficacy of SWP. The thermal transfer performance in SWP is evaluated thru the presence of warmth radiation and heat cause besides viscid dissipation.
View Article and Find Full Text PDFIn a cylindrical cavity, the convection and entropy of the hybrid nanofluid were studied. We have introduced a rectangular fin inside the cylinder; the fin temperature is at Th. The right waving wall is cooled to Tc.
View Article and Find Full Text PDFThe main feature of the current investigation is to analyze the magnetohydrodynamic mixed convection flow of Cross fluid. Flow is due to a movable thin needle with Soret and Dufour effect. Heat generation/absorption and nonlinear heat radiation are used in the energy equation.
View Article and Find Full Text PDFThe current study investigates different methods to minimize the drag coefficient (C) without ignoring the safety factor related to the stability of a vehicle, i.e., the lift coefficient (C).
View Article and Find Full Text PDFCurrent investigation emphasizes the evaluation of entropy in a porous medium of Williamson nanofluid (WNF) flow past an exponentially extending horizontal plate featuring Parabolic Trough Solar Collector (PTSC). Two kinds of nanofluids such as copper-methanol (Cu-MeOH) and alumina-methanol (AlO-MeOH) were tested, discussed and plotted graphically. The fabricated nanoparticles are studied using different techniques, including TDDFT/DMOl method as simulated and SEM measurements as an experimental method.
View Article and Find Full Text PDFIn process engineering as chemical and biotechnological industry, agitated vessels are commonly used for various applications; mechanical agitation and mixing are performed to enhance heat transfer and improve specific Physico-chemical characteristics inside a heated tank. The research subject of this work is a numerical investigation of the thermo-hydrodynamic behavior of viscoplastic fluid (Casson-Papanastasiou model) in a stirred tank, with introducing a new anchor impeller design by conducting some modifications to the standard anchor impeller shape. Four geometry cases have been presented for achieving the mixing process inside the stirred vessel, CAI; classical anchor impeller, AI1; anchor impeller with added horizontal arm blade, AI2 and AI3 anchor impeller with two and three added arm blades, respectively.
View Article and Find Full Text PDFResearchers across the world have tried to explore the impact of non-Newtonian liquid flowing via an extendable surface with the inclusion of various effects due to its industrial and engineering applications like polymer production, paper production, filament extrusion from a dye, etc. This study investigates the behavior of stagnation point flow of Carreau liquid attached with inclined magnetic effect and spectral relaxation approach is utilized here for the numerical outcome. In this study, a few other vital features are attached like the quadratic multiple regression model for Nusselt number evaluation, passive control of nanoparticles, viscus heating thermophoresis, Brownian motion, and mixed convection, etc.
View Article and Find Full Text PDFThe study of hydromagnetic mixed convection flow of viscoelastic fluid caused by a vertical stretched surface is presented in this paper. According to this theory, the stretching velocity varies as a power function of the displacement from the slot. The conservation of energy equation includes thermal radiation and viscous dissipation to support the mechanical operations of the heat transfer mechanism.
View Article and Find Full Text PDFIn solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration.
View Article and Find Full Text PDFArterial stenosis is a common cardiovascular disease that restricts blood flow. A stenotic blood vessel creates tangent stress pressure, which lessens the arterial side and causes an aneurysm. The primary purpose of this study is to investigate blood flowing via an inclination pipe with stricture and expansion after stricture (widening) underneath the influence of a constant incompressible Casson liquid flowing with the magnetism field.
View Article and Find Full Text PDFThe purpose of this article is to investigate the mass and heat transport phenomena associated with micropolar fluid flow created by a vertically stretched Riga surface. This is constructed using an array of irregular electrodes and permanent magnets that are oriented spanwise. Additionally, we investigate the particles' micro rotational impacts.
View Article and Find Full Text PDFA mathematical model of 2D-double diffusive layer flow model of boundary in MHD Maxwell fluid created by a sloping slope surface is constructed in this paper. The numerical findings of non-Newtonian fluid are important to the chemical processing industry, mining industry, plastics processing industry, as well as lubrication and biomedical flows. The diversity of regulatory parameters like buoyancy rate, magnetic field, mixed convection, absorption, Brownian motion, thermophoretic diffusion, Deborah number, Lewis number, Prandtl number, Soret number, as well as Dufour number contributes significant impact on the current model.
View Article and Find Full Text PDFMHD Natural convection, which is one of the principal types of convective heat transfer in numerous research of heat exchangers and geothermal energy systems, as well as nanofluids and hybrid nanofluids. This work focuses on the investigation of Natural convective heat transfer evaluation inside a porous triangular cavity filled with silver-magnesium oxide/water hybrid nanofluid [HO/Ag-MgO] under a consistent magnetic field. The laminar and incompressible nanofluid flow is taken to account while Darcy-Forchheimer model takes account of the advection inertia effect in the porous sheet.
View Article and Find Full Text PDFThe current article aims to discuss the natural convection heat transfer of Ag/AlO-water hybrid filled in an enclosure subjected to a uniform magnetic field and provided with a rotating cylinder and an inner undulated porous layer. The various thermo-physical parameters are investigated such as Rayleigh number ([Formula: see text]), Hartmann number ([Formula: see text]), and the nanoparticles concentration ([Formula: see text]). Likewise, the rotational speed of the cylinder ([Formula: see text]), as well as several characteristics related to the porous layer, are examined li its porosity ([Formula: see text]), Darcy number ([Formula: see text]) which indicates the porous medium permeability and the number of undulations ([Formula: see text]).
View Article and Find Full Text PDFA novel hybrid nanofluid was explored in order to find an efficient heat-transmitting fluid to replace standard fluids and revolutionary nanofluids. By using tangent hyperbolic hybrid combination nanoliquid with non-Newtonian ethylene glycol (EG) as a basis fluid and a copper (Cu) and titanium dioxide (TiO) mixture, this work aims to investigate the viscoelastic elements of the thermal transferring process. Flow and thermal facts, such as a slippery extended surface with magnetohydrodynamic (MHD), suction/injection, form factor, Joule heating, and thermal radiation effects, including changing thermal conductivity, were also integrated.
View Article and Find Full Text PDFSolar thermal collectors distribute, capture, and transform the solar energy into a solar thermal concentration device. The present paper provides a mathematical model for analyzing the flow characteristics and transport of heat to solar collectors (SCs) from non-Newtonian nanofluids. The non-Newtonian power-law scheme is considered for the nanofluid through partial slip constraints at the boundary of a porous flat surface.
View Article and Find Full Text PDFMicromachines (Basel)
November 2021
This paper discusses the Darcy-Forchheimer three dimensional (3D) flow of a permeable nanofluid through a convectively heated porous extending surface under the influences of the magnetic field and nonlinear radiation. The higher-order chemical reactions with activation energy and heat source (sink) impacts are considered. We integrate the nanofluid model by using Brownian diffusion and thermophoresis.
View Article and Find Full Text PDFSurvey of literature unveils that nanofluids are more efficient for heat transport in comparison to the traditional fluids. However, the enlightenment of developed techniques for the augmentation of heat transport in nanomaterials has considerable gaps and, consequently, an extensive investigation for aforementioned models is vital. The ongoing investigation aims to study the 2-D, incompressible Jeffrey nanofluid heat transference flow due to a stretchable surface.
View Article and Find Full Text PDFFluidity and thermal transport across the triangular aperture with lower lateral inlet and apply placed at the vertical outlet of the chamber which filled with efficient TiO-SiO/water hybrid nanofluid under the parametrical influence. Several parameters are tested like the numbers of Hartmann ([Formula: see text]), Richardson ([Formula: see text]), and Reynolds ([Formula: see text]) were critiqued through streamlines, isotherms, and Nusselt number ([Formula: see text]). Numerical model has to be developed and solved through the Galerkin finite element method (GFEM) by discretized with 13,569 triangular elements optimized through grid-independent analysis.
View Article and Find Full Text PDF