Publications by authors named "Mohamed R Al-Mulla"

Background: Familial breast cancer (BC) represents 5 to 10% of all BC cases. Mutations in two high susceptibility BRCA1 and BRCA2 genes explain 16-40% of familial BC, while other high, moderate and low susceptibility genes explain up to 20% more of BC families. The Lebanese reported prevalence of BRCA1 and BRCA2 deleterious mutations (5.

View Article and Find Full Text PDF

In this research an algorithm was developed to classify muscle fatigue content from dynamic contractions, by using a genetic algorithm (GA) and a pseudo-wavelet function. Fatiguing dynamic contractions of the biceps brachii were recorded using Surface Electromyography (sEMG) from thirteen subjects. Labelling the signal into two classes (Fatigue and Non-Fatigue) aided in the training and testing phase.

View Article and Find Full Text PDF

Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions.

View Article and Find Full Text PDF

Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings.

View Article and Find Full Text PDF

The purpose of this study was to develop an algorithm for automated muscle fatigue detection in sports related scenarios. Surface electromyography (sEMG) of the biceps muscle was recorded from ten subjects performing semi-isometric (i.e.

View Article and Find Full Text PDF

Surface Electromyography (sEMG) activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std) was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of fatigue, a longitudinal classification on Non-Fatigue and Transition-to-Fatigue shows 81.

View Article and Find Full Text PDF