Publications by authors named "Mohamed Nabil Khalid"

The purpose of this study was to develop oil-in-water emulsions (100-120 nm in diameter) and to correlate the surface properties of the emulsions with blood residence time and accumulation into neoplastic tissues by passive targeting. We investigated the effect of phospholipid and sphingolipid emulsifiers, hydrogenated soybean phosphatidylcholine (HSPC) and egg sphingomyelin (ESM), in combination with polysorbate 80 (PS-80) and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)-PEG lipids of various PEG chain lengths and structures in prolonging circulation time and enhancing accumulation into B16 melanoma or C26 colon adenocarcinoma. The relationship between amphiphile molecular packing at the air/water interface on emulsion stability upon dilution in albumin and circulation longevity in vivo was also explored for non-PEGylated emulsions.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the ability of poly(ethylene glycol)-coated lipid nanocapsules (LN) to deliver the highly potent hydrophobic anticancer drug docetaxel to solid tumors.

Methods: Docetaxel-loaded nanocapsules (80-120 nm) were produced by a solvent-free phase inversion process and were coated with polyethylene glycol distearoylphosphatidylethanolamine conjugate by a postinsertion step. In vivo studies were conducted in mice bearing subcutaneously implanted C26 colon adenocarcinoma to assess the pharmacokinetics and biodistribution of both the drug and LN.

View Article and Find Full Text PDF

Spherulites are multilamellar vesicles obtained by shearing a lamellar phase of lipids and surfactants. They consist of concentric bilayers of amphiphiles alternating with layers of aqueous medium in which hydrophilic drugs can be sequestered with high yield. To be useful for drug targeting applications, spherulites should be small and long circulating.

View Article and Find Full Text PDF